Maple 2018.2 Integration Test Results
on the problems in "5 Inverse trig functions/5.4 Inverse cotangent"
Test results for the 63 problems in "5.4.1 Inverse cotangent functions.txt"
Problem 3: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{arccot}(a x)}{x} \mathrm{~d} x
$$

Optimal(type 4, 29 leaves, 3 steps):

$$
-\frac{\mathrm{I} \text { polylog }\left(2, \frac{-\mathrm{I}}{a x}\right)}{2}+\frac{\mathrm{I} \text { polylog }\left(2, \frac{\mathrm{I}}{a x}\right)}{2}
$$

Result (type 4, 62 leaves):

$$
\ln (a x) \operatorname{arccot}(a x)-\frac{\mathrm{I} \ln (a x) \ln (1+\mathrm{I} a x)}{2}+\frac{\mathrm{I} \ln (a x) \ln (1-\mathrm{I} a x)}{2}-\frac{\mathrm{I} \operatorname{dilog}(1+\mathrm{I} a x)}{2}+\frac{\mathrm{I} \operatorname{dilog}(1-\mathrm{I} a x)}{2}
$$

Problem 5: Result more than twice size of optimal antiderivative.

$$
\int x^{2} \operatorname{arccot}(a x)^{2} \mathrm{~d} x
$$

Optimal(type 4, 93 leaves, 9 steps):

$$
\frac{x}{3 a^{2}}+\frac{x^{2} \operatorname{arccot}(a x)}{3 a}-\frac{\mathrm{I} \operatorname{arccot}(a x)^{2}}{3 a^{3}}+\frac{x^{3} \operatorname{arccot}(a x)^{2}}{3}-\frac{\arctan (a x)}{3 a^{3}}+\frac{2 \operatorname{arccot}(a x) \ln \left(\frac{2}{1+\mathrm{I} a x}\right)}{3 a^{3}}-\frac{\mathrm{I} \operatorname{polylog}\left(2,1-\frac{2}{1+\mathrm{I} a x}\right)}{3 a^{3}}
$$

Result(type 4, 212 leaves):
$\frac{x^{3} \operatorname{arccot}(a x)^{2}}{3}+\frac{x^{2} \operatorname{arccot}(a x)}{3 a}-\frac{\operatorname{arccot}(a x) \ln \left(a^{2} x^{2}+1\right)}{3 a^{3}}+\frac{x}{3 a^{2}}-\frac{\arctan (a x)}{3 a^{3}}-\frac{\mathrm{I} \ln (a x-\mathrm{I})^{2}}{12 a^{3}}+\frac{\mathrm{I} \ln (a x-\mathrm{I}) \ln \left(a^{2} x^{2}+1\right)}{6 a^{3}}$
$-\frac{\mathrm{I} \ln (a x-\mathrm{I}) \ln \left(-\frac{\mathrm{I}}{2}(\mathrm{I}+a x)\right)}{6 a^{3}}-\frac{\mathrm{I} \operatorname{dilog}\left(-\frac{\mathrm{I}}{2}(\mathrm{I}+a x)\right)}{6 a^{3}}+\frac{\mathrm{I} \ln (\mathrm{I}+a x)^{2}}{12 a^{3}}+\frac{\mathrm{I} \ln (\mathrm{I}+a x) \ln \left(\frac{\mathrm{I}}{2}(a x-\mathrm{I})\right)}{6 a^{3}}-\frac{\mathrm{I} \ln (\mathrm{I}+a x) \ln \left(a^{2} x^{2}+1\right)}{6 a^{3}}$

$$
+\frac{\mathrm{Idilog}\left(\frac{\mathrm{I}}{2}(a x-\mathrm{I})\right)}{6 a^{3}}
$$

Problem 7: Result more than twice size of optimal antiderivative.

$$
\int \operatorname{arccot}(a x)^{2} \mathrm{~d} x
$$

Optimal(type 4, 63 leaves, 5 steps):

$$
\frac{\mathrm{I} \operatorname{arccot}(a x)^{2}}{a}+x \operatorname{arccot}(a x)^{2}-\frac{2 \operatorname{arccot}(a x) \ln \left(\frac{2}{1+\mathrm{I} a x}\right)}{a}+\frac{\mathrm{I} \operatorname{polylog}\left(2,1-\frac{2}{1+\mathrm{I} a x}\right)}{a}
$$

Result(type 4, 135 leaves):
$x \operatorname{arccot}(a x)^{2}+\frac{\mathrm{I} \operatorname{arccot}(a x)^{2}}{a}+\frac{2 \mathrm{I} \operatorname{polylog}\left(2, \frac{\mathrm{I}+a x}{\sqrt{a^{2} x^{2}+1}}\right)}{a}+\frac{2 \mathrm{I} \operatorname{poly} \log \left(2,-\frac{\mathrm{I}+a x}{\sqrt{a^{2} x^{2}+1}}\right)}{a}-\frac{2 \operatorname{arccot}(a x) \ln \left(1+\frac{\mathrm{I}+a x}{\sqrt{a^{2} x^{2}+1}}\right)}{a}$

$$
-\frac{2 \operatorname{arccot}(a x) \ln \left(1-\frac{\mathrm{I}+a x}{\sqrt{a^{2} x^{2}+1}}\right)}{a}
$$

Problem 8: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{arccot}(a x)^{2}}{x} \mathrm{~d} x
$$

Optimal(type 4, 103 leaves, 6 steps):
$2 \operatorname{arccot}(a x)^{2} \operatorname{arccoth}\left(1-\frac{2}{1+\mathrm{I} a x}\right)-\mathrm{I} \operatorname{arccot}(a x) \operatorname{polylog}\left(2,1-\frac{2 \mathrm{I}}{\mathrm{I}+a x}\right)+\mathrm{I} \operatorname{arccot}(a x) \operatorname{polylog}\left(2,1-\frac{2 a x}{\mathrm{I}+a x}\right)-\frac{\operatorname{polylog}\left(3,1-\frac{2 \mathrm{I}}{\mathrm{I}+a x}\right)}{2}$

$$
+\frac{\operatorname{poly} \log \left(3,1-\frac{2 a x}{\mathrm{I}+a x}\right)}{2}
$$

Result(type 4, 958 leaves):
$\ln (a x) \operatorname{arccot}(a x)^{2}+2 \operatorname{Iarccot}(a x) \operatorname{poly} \log \left(2, \frac{\mathrm{I}+a x}{\sqrt{a^{2} x^{2}+1}}\right)-\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{1+\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}}{\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}-1}\right)^{3} \operatorname{arccot}(a x)^{2}}{2}+\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(1+\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}\right)}{\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}-1}\right)^{3} \operatorname{arccot}(a x)^{2}}{2}$
$-\mathrm{I} \operatorname{arccot}(a x) \operatorname{poly} \log \left(2,-\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}\right)-\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{1+\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}}{\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}-1}\right)^{2} \operatorname{csgn}\left(\frac{\mathrm{I}\left(1+\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}\right)}{\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}-1}\right) \operatorname{arccot}(a x)^{2}}{2}$

$$
\begin{aligned}
& -\frac{I \pi \operatorname{csgn}\left(I\left(1+\frac{(I+a x)^{2}}{a^{2} x^{2}+1}\right)\right) \operatorname{csgn}\left(\frac{I\left(1+\frac{(I+a x)^{2}}{a^{2} x^{2}+1}\right)}{\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}-1}\right)^{2} \operatorname{arccot}(a x)^{2}}{2}+\frac{I \pi \operatorname{csgn}\left(\frac{1+\frac{(I+a x)^{2}}{a^{2} x^{2}+1}}{\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(1+\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}\right)}{\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}-1}\right) \operatorname{arccot}(a x)^{2}}{2} \\
& -\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(1+\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}\right)}{\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}-1}\right)^{2} \operatorname{arccot}(a x)^{2}}{2} \\
& +\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}-1}\right) \operatorname{csgn}\left(\mathrm{I}\left(1+\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(1+\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}\right)}{\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}-1}\right) \operatorname{arccot}(a x)^{2}}{2}+\operatorname{arccot}(a x)^{2} \ln \left(\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}-1\right) \\
& -\operatorname{arccot}(a x)^{2} \ln \left(1+\frac{\mathrm{I}+a x}{\sqrt{a^{2} x^{2}+1}}\right)+2 \mathrm{I} \operatorname{arccot}(a x) \operatorname{polylog}\left(2,-\frac{\mathrm{I}+a x}{\sqrt{a^{2} x^{2}+1}}\right)-2 \operatorname{polylog}\left(3,-\frac{\mathrm{I}+a x}{\sqrt{a^{2} x^{2}+1}}\right)-\operatorname{arccot}(a x)^{2} \ln \left(1-\frac{\mathrm{I}+a x}{\sqrt{a^{2} x^{2}+1}}\right) \\
& +\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{1+\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}}{\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}-1}\right)^{2} \operatorname{arccot}(a x)^{2}}{2}-2 \operatorname{polylog}\left(3, \frac{\mathrm{I}+a x}{\sqrt{a^{2} x^{2}+1}}\right)-\frac{\mathrm{I} \pi \operatorname{arccot}(a x)^{2}}{2}+\frac{\operatorname{poly} \log \left(3,-\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}\right)}{2}
\end{aligned}
$$

Problem 9: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{arccot}(a x)^{2}}{x^{2}} \mathrm{~d} x
$$

Optimal(type 4, 62 leaves, 4 steps):

$$
-\mathrm{I} a \operatorname{arccot}(a x)^{2}-\frac{\operatorname{arccot}(a x)^{2}}{x}-2 a \operatorname{arccot}(a x) \ln \left(2-\frac{2}{1-\mathrm{I} a x}\right)-\mathrm{I} a \operatorname{polylog}\left(2,-1+\frac{2}{1-\mathrm{I} a x}\right)
$$

Result(type 4, 233 leaves):
$-\frac{\operatorname{arccot}(a x)^{2}}{x}+a \operatorname{arccot}(a x) \ln \left(a^{2} x^{2}+1\right)-2 a \ln (a x) \operatorname{arccot}(a x)+\frac{\mathrm{I} a \ln (a x-\mathrm{I})^{2}}{4}-\frac{\mathrm{I} a \ln (a x-\mathrm{I}) \ln \left(a^{2} x^{2}+1\right)}{2}+\frac{\mathrm{I} a \ln (a x-\mathrm{I}) \ln \left(-\frac{\mathrm{I}}{2}(\mathrm{I}+a x)\right)}{2}$

$$
+\frac{\mathrm{I} a \operatorname{dilog}\left(-\frac{\mathrm{I}}{2}(\mathrm{I}+a x)\right)}{2}-\frac{\mathrm{I} a \ln (\mathrm{I}+a x)^{2}}{4}-\frac{\mathrm{I} a \ln (\mathrm{I}+a x) \ln \left(\frac{\mathrm{I}}{2}(a x-\mathrm{I})\right)}{2}+\frac{\mathrm{I} a \ln (\mathrm{I}+a x) \ln \left(a^{2} x^{2}+1\right)}{2}-\frac{\mathrm{I} a \operatorname{dilog}\left(\frac{\mathrm{I}}{2}(a x-\mathrm{I})\right)}{2}
$$

$$
+\mathrm{I} a \ln (a x) \ln (1+\mathrm{I} a x)-\mathrm{I} a \ln (a x) \ln (1-\mathrm{I} a x)+\mathrm{I} a \operatorname{dilog}(1+\mathrm{I} a x)-\mathrm{I} a \operatorname{dilog}(1-\mathrm{I} a x)
$$

Problem 11: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{arccot}(a x)^{3}}{x} \mathrm{~d} x
$$

Optimal(type 4, 152 leaves, 8 steps):
$2 \operatorname{arccot}(a x)^{3} \operatorname{arccoth}\left(1-\frac{2}{1+\mathrm{I} a x}\right)-\frac{3 \mathrm{I} \operatorname{arccot}(a x)^{2} \operatorname{polylog}\left(2,1-\frac{2 \mathrm{I}}{\mathrm{I}+a x}\right)}{2}+\frac{3 \mathrm{I} \operatorname{arccot}(a x)^{2} \operatorname{polylog}\left(2,1-\frac{2 a x}{\mathrm{I}+a x}\right)}{2}$

$$
-\frac{3 \operatorname{arccot}(a x) \operatorname{polylog}\left(3,1-\frac{2 \mathrm{I}}{\mathrm{I}+a x}\right)}{2}+\frac{3 \operatorname{arccot}(a x) \operatorname{polylog}\left(3,1-\frac{2 a x}{\mathrm{I}+a x}\right)}{2}+\frac{3 \mathrm{I} \operatorname{polylog}\left(4,1-\frac{2 \mathrm{I}}{\mathrm{I}+a x}\right)}{4}-\frac{3 \mathrm{I} \operatorname{polylog}\left(4,1-\frac{2 a x}{\mathrm{I}+a x}\right)}{4}
$$

Result(type 4, 1049 leaves):
$\ln (a x) \operatorname{arccot}(a x)^{3}+\operatorname{arccot}(a x)^{3} \ln \left(\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}-1\right)-\operatorname{arccot}(a x)^{3} \ln \left(1+\frac{\mathrm{I}+a x}{\sqrt{a^{2} x^{2}+1}}\right)-\frac{\mathrm{I} \pi \operatorname{arccot}(a x)^{3}}{2}-6 \operatorname{arccot}(a x) \operatorname{poly} \log \left(3,-\frac{\mathrm{I}+a x}{\sqrt{a^{2} x^{2}+1}}\right)$
$+3 \operatorname{I} \operatorname{arccot}(a x)^{2} \operatorname{polylog}\left(2, \frac{\mathrm{I}+a x}{\sqrt{a^{2} x^{2}+1}}\right)-\operatorname{arccot}(a x)^{3} \ln \left(1-\frac{\mathrm{I}+a x}{\sqrt{a^{2} x^{2}+1}}\right)-\frac{3 \mathrm{I} \operatorname{arccot}(a x)^{2} \operatorname{poly} \log \left(2,-\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}\right)}{2}-6 \operatorname{arccot}(a x) \operatorname{polylog}(3$, $\left.\frac{\mathrm{I}+a x}{\sqrt{a^{2} x^{2}+1}}\right)+\frac{3 \operatorname{I~polylog}\left(4,-\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}\right)}{4}-6 \operatorname{Ipolylog}\left(4,-\frac{\mathrm{I}+a x}{\sqrt{a^{2} x^{2}+1}}\right)+\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{1+\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}}{\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(1+\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}\right)}{\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}-1}\right) \operatorname{arccot(ax)^{3}}}{2}$ $-\frac{\mathrm{I} \pi \operatorname{csgn}\left(\mathrm{I}\left(1+\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(1+\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}\right)}{\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}-1}\right)^{2} \operatorname{arccot}(a x)^{3}}{2}+\frac{3 \operatorname{arccot}(a x) \operatorname{polylog}\left(3,-\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}\right)}{2}+3 \mathrm{I} \operatorname{arccot}(a x)^{2} \operatorname{polylog}(2$, $\left.-\frac{\mathrm{I}+a x}{\sqrt{a^{2} x^{2}+1}}\right)-\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(1+\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}\right)}{\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}-1}\right)^{2} \operatorname{arccot}(a x)^{3}}{2}$

$$
\begin{aligned}
& -\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{1+\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}}{\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}-1}\right)^{2} \operatorname{csgn}\left(\frac{\mathrm{I}\left(1+\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}\right)}{\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}-1}\right) \operatorname{arccot}(a x)^{3}}{2}-6 \mathrm{I} \operatorname{poly} \log \left(4, \frac{\mathrm{I}+a x}{\sqrt{a^{2} x^{2}+1}}\right) \\
& +\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(1+\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}\right)}{\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}-1}\right)^{3} \operatorname{arccot}(a x)^{3}}{2}-\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{1+\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}}{\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}-1}\right)^{3} \operatorname{arccot}(a x)^{3}}{2}+\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{1+\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}}{\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}-1}\right)^{2} \operatorname{arccot}(a x)^{3}}{2} \\
& +\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}-1}\right) \operatorname{csgn}\left(\mathrm{I}\left(1+\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(1+\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}\right)}{\frac{(\mathrm{I}+a x)^{2}}{a^{2} x^{2}+1}-1}\right) \operatorname{arccot}(a x)^{3}}{2}
\end{aligned}
$$

Problem 20: Unable to integrate problem.

$$
\int \frac{\operatorname{arccot}(a x)}{\left(d x^{2}+c\right)^{9 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 257 leaves, 8 steps):
$\frac{a}{35 c\left(c a^{2}-d\right)\left(d x^{2}+c\right)^{5 / 2}}+\frac{a\left(11 c a^{2}-6 d\right)}{105 c^{2}\left(c a^{2}-d\right)^{2}\left(d x^{2}+c\right)^{3 / 2}}+\frac{x \operatorname{arccot}(a x)}{7 c\left(d x^{2}+c\right)^{7 / 2}}+\frac{6 x \operatorname{arccot}(a x)}{35 c^{2}\left(d x^{2}+c\right)^{5 / 2}}+\frac{8 x \operatorname{arccot}(a x)}{35 c^{3}\left(d x^{2}+c\right)^{3 / 2}}$

$$
-\frac{\left(35 a^{6} c^{3}-70 a^{4} c^{2} d+56 a^{2} c d^{2}-16 d^{3}\right) \operatorname{arctanh}\left(\frac{a \sqrt{d x^{2}+c}}{\sqrt{c a^{2}-d}}\right)}{35 c^{4}\left(c a^{2}-d\right)^{7 / 2}}+\frac{a\left(19 a^{4} c^{2}-22 a^{2} c d+8 d^{2}\right)}{35 c^{3}\left(c a^{2}-d\right)^{3} \sqrt{d x^{2}+c}}+\frac{16 x \operatorname{arccot}(a x)}{35 c^{4} \sqrt{d x^{2}+c}}
$$

Result(type 8, 16 leaves):

$$
\int \frac{\operatorname{arccot}(a x)}{\left(d x^{2}+c\right)^{9 / 2}} \mathrm{~d} x
$$

Problem 31: Result is not expressed in closed-form.

$$
\int \frac{\operatorname{arccot}(e x+d)}{c x^{2}+b x+a} \mathrm{~d} x
$$

Optimal(type 4, 329 leaves, 12 steps):

$$
\begin{aligned}
& \operatorname{arccot}(e x+d) \ln \left(\frac{2 e\left(b+2 c x-\sqrt{-4 a c+b^{2}}\right)}{(1-\mathrm{I}(e x+d))\left(2 c(\mathrm{I}-d)+e\left(b-\sqrt{-4 a c+b^{2}}\right)\right)}\right) \\
&-\frac{\sqrt{-4 a c+b^{2}}}{\operatorname{arccot}(e x+d) \ln \left(\frac{2 e\left(b+2 c x+\sqrt{-4 a c+b^{2}}\right)}{(1-\mathrm{I}(e x+d))\left(2 c(\mathrm{I}-d)+e\left(b+\sqrt{-4 a c+b^{2}}\right)\right)}\right)} \\
&+\left.\frac{\operatorname{Ipolylog}\left(2,1+\frac{2\left(2 c d-2 c(e x+d)-e\left(b-\sqrt{-4 a c+b^{2}}\right)\right)}{(1-\mathrm{I}(e x+d))\left(2 \mathrm{I} c-2 c d+b e-e \sqrt{-4 a c+b^{2}}\right)}\right)}{2 \sqrt{-4 a c+b^{2}}}\right) \\
&+ \mathrm{I} \operatorname{polylog}\left(2,1+\frac{2\left(2 c d-2 c(e x+d)-e\left(b+\sqrt{-4 a c+b^{2}}\right)\right)}{(1-\mathrm{I}(e x+d))\left(2 c(\mathrm{I}-d)+e\left(b+\sqrt{-4 a c+b^{2}}\right)\right)}\right) \\
&- 2 \sqrt{-4 a c+b^{2}}
\end{aligned}
$$

Result(type 7, 227 leaves):
$-e($

$$
\begin{aligned}
& \sum_{a} \\
& -R I=\operatorname{RootOf}\left(\left(\mathrm{I} b e-2 \mathrm{I} c d+a e^{2}-b e d+c d^{2}-c\right) _Z^{4}+\left(-2 a e^{2}+2 b e d-2 c d^{2}-2 c\right) Z^{2}-\mathrm{I} b e+2 \mathrm{I} c d+a e^{2}-b e d+c d^{2}-c\right) \\
& \left.\frac{\mathrm{I} \operatorname{arccot}(e x+d) \ln \left(\frac{-R I-\frac{e x+d+\mathrm{I}}{\sqrt{(e x+d)^{2}+1}}}{R 1}\right)+\operatorname{dilog}\left(\frac{-R 1-\frac{e x+d+\mathrm{I}}{\sqrt{(e x+d)^{2}+1}}}{R I^{2} a e^{2}-R I^{2} b d e+I_{-} R 1^{2} b e+{ }_{-} R 1^{2} c d^{2}-2 \mathrm{I}_{-} R I^{2} c d-{ }_{-} R 1^{2} c-a e^{2}+b e d-c d^{2}-c}\right)}{(}\right)
\end{aligned}
$$

Problem 37: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{arccot}(b x+a)}{b x+a} \mathrm{~d} x
$$

Optimal(type 4, 37 leaves, 4 steps):

$$
-\frac{\mathrm{I} \text { polylog }\left(2, \frac{-\mathrm{I}}{b x+a}\right)}{2 b}+\frac{\mathrm{I} \text { polylog }\left(2, \frac{\mathrm{I}}{b x+a}\right)}{2 b}
$$

Result (type 4, 97 leaves):
$\frac{\ln (b x+a) \operatorname{arccot}(b x+a)}{b}-\frac{\mathrm{I} \ln (b x+a) \ln (1+\mathrm{I}(b x+a))}{2 b}+\frac{\mathrm{I} \ln (b x+a) \ln (1-\mathrm{I}(b x+a))}{2 b}-\frac{\mathrm{Idilog}(1+\mathrm{I}(b x+a))}{2 b}+\frac{\mathrm{Idilog}(1-\mathrm{I}(b x+a))}{2 b}$

Problem 38: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{arccot}(1+x)}{2+2 x} d x
$$

Optimal(type 4, 27 leaves, 5 steps):

$$
-\frac{\mathrm{I} \text { polylog}\left(2, \frac{-\mathrm{I}}{1+x}\right)}{4}+\frac{\mathrm{I} \text { polylog}\left(2, \frac{\mathrm{I}}{1+x}\right)}{4}
$$

Result (type 4, 67 leaves):

$$
\frac{\ln (1+x) \operatorname{arccot}(1+x)}{2}-\frac{\mathrm{I} \ln (1+x) \ln (1+\mathrm{I}(1+x))}{4}+\frac{\mathrm{I} \ln (1+x) \ln (1-\mathrm{I}(1+x))}{4}-\frac{\mathrm{I} \operatorname{dilog}(1+\mathrm{I}(1+x))}{4}+\frac{\mathrm{I} \operatorname{dilog}(1-\mathrm{I}(1+x))}{4}
$$

Problem 41: Result more than twice size of optimal antiderivative.

$$
\int(f x+e)(a+b \operatorname{arccot}(d x+c))^{3} \mathrm{~d} x
$$

Optimal(type 4, 316 leaves, 15 steps):
$\frac{3 \mathrm{I} b f(a+b \operatorname{arccot}(d x+c))^{2}}{2 d^{2}}+\frac{3 b f(d x+c)(a+b \operatorname{arccot}(d x+c))^{2}}{2 d^{2}}+\frac{\mathrm{I}(-c f+d e)(a+b \operatorname{arccot}(d x+c))^{3}}{d^{2}}$
$-\frac{(-c f+d e+f)(d e-(1+c) f)(a+b \operatorname{arccot}(d x+c))^{3}}{2 d^{2} f}+\frac{(f x+e)^{2}(a+b \operatorname{arccot}(d x+c))^{3}}{2 f}$
$-\frac{3 b^{2} f(a+b \operatorname{arccot}(d x+c)) \ln \left(\frac{2}{1+\mathrm{I}(d x+c)}\right)}{d^{2}}-\frac{3 b(-c f+d e)(a+b \operatorname{arccot}(d x+c))^{2} \ln \left(\frac{2}{1+\mathrm{I}(d x+c)}\right)}{d^{2}}$

$$
+\frac{3 \mathrm{I} b^{3} f \text { polylog }\left(2,1-\frac{2}{1+\mathrm{I}(d x+c)}\right)}{2 d^{2}}+\frac{3 \mathrm{I} b^{2}(-c f+d e)(a+b \operatorname{arccot}(d x+c)) \operatorname{polylog}\left(2,1-\frac{2}{1+\mathrm{I}(d x+c)}\right)}{d^{2}}
$$

$$
-\frac{3 b^{3}(-c f+d e) \text { polylog }\left(3,1-\frac{2}{1+\mathrm{I}(d x+c)}\right)}{2 d^{2}}
$$

Result(type 4, 1569 leaves):
$-\frac{b^{3} \operatorname{arccot}(d x+c)^{3} f c^{2}}{2 d^{2}}+\frac{3 b^{3} \operatorname{arccot}(d x+c)^{2} f x}{2 d}+\frac{3 b^{3} \operatorname{arccot}(d x+c)^{2} f c}{2 d^{2}}-\frac{3 b^{3} f \operatorname{arccot}(d x+c) \ln \left(1+\frac{d x+c+\mathrm{I}}{\sqrt{1+(d x+c)^{2}}}\right)}{d^{2}}$
$-\frac{3 b^{3} f \operatorname{arccot}(d x+c) \ln \left(1-\frac{d x+c+\mathrm{I}}{\sqrt{1+(d x+c)^{2}}}\right)}{d^{2}}+\frac{6 b^{3} c f \text { polylog }\left(3, \frac{d x+c+\mathrm{I}}{\sqrt{1+(d x+c)^{2}}}\right)}{d^{2}}+\frac{6 b^{3} c f \operatorname{poly} \log \left(3,-\frac{d x+c+\mathrm{I}}{\left.\sqrt{1+(d x+c)^{2}}\right)}\right.}{d^{2}}$
$+3 \operatorname{arccot}(d x+c)^{2} x a b^{2} e+3 \operatorname{arccot}(d x+c) x a^{2} b e+\frac{3 a^{2} b \operatorname{arccot}(d x+c) f x^{2}}{2}+\frac{3 a^{2} b x f}{2 d}+\frac{3 \mathrm{I} b^{3} \operatorname{arccot}(d x+c)^{2} f}{2 d^{2}}$
$+\frac{3 \mathrm{I} b^{3} f \text { polylog }\left(2,-\frac{d x+c+\mathrm{I}}{\sqrt{1+(d x+c)^{2}}}\right)}{d^{2}}+\frac{3 \mathrm{I} b^{3} f \text { polylog }\left(2, \frac{d x+c+\mathrm{I}}{\sqrt{1+(d x+c)^{2}}}\right)}{d^{2}}-\frac{3 a^{2} b f \arctan (d x+c)}{2 d^{2}}-\frac{3 a b^{2} f \arctan (d x+c)^{2}}{2 d^{2}}$
$+\frac{3 a b^{2} f \ln \left(1+(d x+c)^{2}\right)}{2 d^{2}}-\frac{3 b^{3} e \operatorname{arccot}(d x+c)^{2} \ln \left(1-\frac{d x+c+\mathrm{I}}{\sqrt{1+(d x+c)^{2}}}\right)}{d}-\frac{3 b^{3} e \operatorname{arccot}(d x+c)^{2} \ln \left(1+\frac{d x+c+\mathrm{I}}{\sqrt{1+(d x+c)^{2}}}\right)}{d}$
$+\frac{\operatorname{arccot}(d x+c)^{3} b^{3} c e}{d}+\frac{3 a^{2} b \ln \left(1+(d x+c)^{2}\right) e}{2 d}+\frac{I b^{3} \operatorname{arccot}(d x+c)^{3} e}{d}+\frac{3 a^{2} b f c}{2 d^{2}}+\frac{3 a b^{2} \operatorname{arccot}(d x+c)^{2} f x^{2}}{2}$
$-\frac{6 \mathrm{I} b^{3} c f \operatorname{arccot}(d x+c) \operatorname{polylog}\left(2,-\frac{d x+c+\mathrm{I}}{\sqrt{1+(d x+c)^{2}}}\right)}{d^{2}}-\frac{6 \mathrm{I} b^{3} c f \operatorname{arccot}(d x+c) \operatorname{polylog}\left(2, \frac{d x+c+\mathrm{I}}{\sqrt{1+(d x+c)^{2}}}\right)}{d^{2}}-\frac{3 \mathrm{I} a b^{2} \ln (d x+c-\mathrm{I})^{2} c f}{4 d^{2}}$
$-\frac{3 \mathrm{I} a b^{2} \operatorname{dilog}\left(-\frac{\mathrm{I}}{2}(d x+c+\mathrm{I})\right) c f}{2 d^{2}}+\frac{3 \mathrm{I} a b^{2} \ln (d x+c+\mathrm{I})^{2} c f}{4 d^{2}}+\frac{3 \mathrm{I} a b^{2} \operatorname{dilog}\left(\frac{\mathrm{I}}{2}(d x+c-\mathrm{I})\right) c f}{2 d^{2}}-\frac{3 \mathrm{I} a b^{2} \ln (d x+c-\mathrm{I}) \ln \left(1+(d x+c)^{2}\right) e}{2 d}$
$-\frac{3 \mathrm{I} a b^{2} \ln (d x+c+\mathrm{I}) \ln \left(\frac{\mathrm{I}}{2}(d x+c-\mathrm{I})\right) e}{2 d}-\frac{3 a b^{2} \operatorname{arccot}(d x+c) \ln \left(1+(d x+c)^{2}\right) c f}{d^{2}}+\frac{3 \mathrm{I} a b^{2} \ln (d x+c+\mathrm{I}) \ln \left(1+(d x+c)^{2}\right) e}{2 d}$
$+\frac{3 \mathrm{I} a b^{2} \ln (d x+c-\mathrm{I}) \ln \left(-\frac{\mathrm{I}}{2}(d x+c+\mathrm{I})\right) e}{2 d}+\frac{b^{3} \operatorname{arccot}(d x+c)^{3} f x^{2}}{2}+\operatorname{arccot}(d x+c)^{3} x b^{3} e+\frac{b^{3} \operatorname{arccot}(d x+c)^{3} f}{2 d^{2}}$
$-\frac{6 b^{3} e \text { polylog }\left(3,-\frac{d x+c+\mathrm{I}}{\sqrt{1+(d x+c)^{2}}}\right)}{d}-\frac{6 b^{3} e \operatorname{polylog}\left(3, \frac{d x+c+\mathrm{I}}{\sqrt{1+(d x+c)^{2}}}\right)}{d}-\frac{a^{3} c^{2} f}{2 d^{2}}+\frac{a^{3} c e}{d}+\frac{a^{3} x^{2} f}{2}+a^{3} x e$
$-\frac{3 \mathrm{I} a b^{2} \ln (d x+c-\mathrm{I}) \ln \left(-\frac{\mathrm{I}}{2}(d x+c+\mathrm{I})\right) c f}{2 d^{2}}+\frac{3 \mathrm{I} a b^{2} \ln (d x+c-\mathrm{I}) \ln \left(1+(d x+c)^{2}\right) c f}{2 d^{2}}+\frac{3 \mathrm{I} a b^{2} \ln (d x+c+\mathrm{I}) \ln \left(\frac{\mathrm{I}}{2}(d x+c-\mathrm{I})\right) c f}{2 d^{2}}$
$-\frac{3 \mathrm{I} a b^{2} \ln (d x+c+\mathrm{I}) \ln \left(1+(d x+c)^{2}\right) c f}{2 d^{2}}+\frac{3 \mathrm{I} a b^{2} \ln (d x+c-\mathrm{I})^{2} e}{4 d}+\frac{3 \mathrm{I} a b^{2} \operatorname{dilog}\left(-\frac{\mathrm{I}}{2}(d x+c+\mathrm{I})\right) e}{2 d}-\frac{3 \mathrm{I} a b^{2} \ln (d x+c+\mathrm{I})^{2} e}{4 d}$
$-\frac{\mathrm{I} b^{3} \operatorname{arccot}(d x+c)^{3} c f}{d^{2}}+\frac{3 \operatorname{arccot}(d x+c)^{2} a b^{2} c e}{d}+\frac{3 \operatorname{arccot}(d x+c) a^{2} b c e}{d}+\frac{3 a b^{2} \operatorname{arccot}(d x+c) \ln \left(1+(d x+c)^{2}\right) e}{d}$
$-\frac{3 a b^{2} \operatorname{arccot}(d x+c) \arctan (d x+c) f}{d^{2}}+\frac{3 b^{3} c f \operatorname{arccot}(d x+c)^{2} \ln \left(1-\frac{d x+c+\mathrm{I}}{\sqrt{1+(d x+c)^{2}}}\right)}{d^{2}}+\frac{3 b^{3} c f \operatorname{arccot}(d x+c)^{2} \ln \left(1+\frac{d x+c+\mathrm{I}}{\sqrt{1+(d x+c)^{2}}}\right)}{d^{2}}$
$-\frac{3 a^{2} b \operatorname{arccot}(d x+c) c^{2} f}{2 d^{2}}-\frac{3 a b^{2} \operatorname{arccot}(d x+c)^{2} c^{2} f}{2 d^{2}}+\frac{3 a b^{2} \operatorname{arccot}(d x+c) f x}{d}+\frac{3 a b^{2} \operatorname{arccot}(d x+c) f c}{d^{2}}-\frac{3 a^{2} b \ln \left(1+(d x+c)^{2}\right) c f}{2 d^{2}}$
$+\frac{6 \mathrm{I} b^{3} e \operatorname{arccot}(d x+c) \operatorname{polylog}\left(2,-\frac{d x+c+\mathrm{I}}{\sqrt{1+(d x+c)^{2}}}\right)}{d}+\frac{6 \mathrm{I} b^{3} e \operatorname{arccot}(d x+c) \operatorname{polylog}\left(2, \frac{d x+c+\mathrm{I}}{\sqrt{1+(d x+c)^{2}}}\right)}{d}-\frac{3 \mathrm{I} a b^{2} \operatorname{dilog}\left(\frac{\mathrm{I}}{2}(d x+c-\mathrm{I})\right) e}{2 d}$

Problem 44: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(a+b \operatorname{arccot}\left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)\right)^{3}}{-c^{2} x^{2}+1} \mathrm{~d} x
$$

Optimal(type 4, 402 leaves, 9 steps):

$$
-\underline{2\left(a+b \operatorname{arccot}\left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)\right)^{3} \operatorname{arccoth}\left(1-\frac{2}{1+\frac{\mathrm{I} \sqrt{-c x+1}}{\sqrt{c x+1}}}\right)}+\frac{3 \mathrm{I} b\left(a+b \operatorname{arccot}\left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)\right)^{2} \operatorname{polylog}\left(2,1-\frac{2 \mathrm{I}}{\mathrm{I}+\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}}\right)}{(1)}
$$

$$
c
$$

$-\frac{3 \mathrm{I} b\left(a+b \operatorname{arccot}\left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)\right)^{2} \operatorname{polylog}\left(2,1-\frac{2 \sqrt{-c x+1}}{\left(\mathrm{I}+\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right) \sqrt{c x+1}}\right)}{2 c}$
$+\frac{3 b^{2}\left(a+b \operatorname{arccot}\left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)\right) \operatorname{polylog}\left(3,1-\frac{2 \mathrm{I}}{\mathrm{I}+\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}}\right)}{2 c}$

$$
-\frac{3 b^{2}\left(a+b \operatorname{arccot}\left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)\right) \operatorname{polylog}\left(3,1-\frac{2 \sqrt{-c x+1}}{\left(\mathrm{I}+\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right) \sqrt{c x+1}}\right)}{2 c}-\frac{3 \mathrm{I} b^{3} \operatorname{polylog}\left(4,1-\frac{2 \mathrm{I}}{\left.\mathrm{I}+\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)}\right.}{4 c}
$$

Result(type 4, 1716 leaves):

$$
\frac{3 a^{2} b \operatorname{arccot}\left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right) \ln \left(1+\frac{\mathrm{I}+\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}}{\sqrt{\frac{-c x+1}{c x+1}+1}}\right)}{c}-\frac{3 a^{2} b \operatorname{arccot}\left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right) \ln \left(1+\frac{\left(\mathrm{I}+\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)^{2}}{\frac{-c x+1}{c x+1}+1}\right)}{c}
$$

$$
\begin{aligned}
& +\frac{3 a^{2} b \operatorname{arccot}\left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right) \ln \left(1-\frac{\mathrm{I}+\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}}{\sqrt{\frac{-c x+1}{c x+1}+1}}\right)}{c}-\frac{3 \mathrm{I} a^{2} b \operatorname{polylog}\left(2,-\frac{\mathrm{I}+\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}}{\sqrt{\frac{-c x+1}{c x+1}+1}}\right)}{c}+\frac{3 \mathrm{I} a^{2} b \operatorname{polylog}\left(2,-\frac{\left(\mathrm{I}+\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)^{2}}{\frac{-c x+1}{c x+1}+1}\right)}{2 c} \\
& +\frac{3 a b^{2} \operatorname{arccot}\left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)^{2} \ln \left(1+\frac{\mathrm{I}+\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}}{\sqrt{\frac{-c x+1}{c x+1}+1}}\right)}{c}-\frac{3 a b^{2} \operatorname{arccot}\left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)^{2} \ln \left(1+\frac{\left(\mathrm{I}+\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)^{2}}{\frac{-c x+1}{c x+1}+1}\right)}{c} \\
& 3 a b^{2} \operatorname{arccot}\left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)^{2} \ln \left(1-\frac{\mathrm{I}+\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}}{\sqrt{\frac{-c x+1}{c x+1}+1}}\right) \quad 3 \mathrm{I} b^{3} \operatorname{arccot}\left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)^{2} \operatorname{polylog}\left(2,-\frac{\mathrm{I}+\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}}{\sqrt{\frac{-c x+1}{c x+1}+1}}\right) \\
& +\frac{3 \mathrm{I} b^{3} \operatorname{arccot}\left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)^{2} \operatorname{polylog}\left(2,-\frac{\left(\mathrm{I}+\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)^{2}}{\frac{-c x+1}{c x+1}+1}\right)}{2 c}-\frac{3 \mathrm{I} b^{3} \operatorname{arccot}\left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)^{2} \operatorname{polylog}\left(2, \frac{\mathrm{I}+\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}}{\sqrt{\frac{-c x+1}{c x+1}+1}}\right)}{c} \\
& -\frac{3 \mathrm{I} a^{2} b \text { polylog }\left(2, \frac{\mathrm{I}+\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}}{\sqrt{\frac{-c x+1}{c x+1}+1}}\right)}{c} \\
& +\frac{a^{3} \ln (c x+1)}{2 c}-\frac{a^{3} \ln (c x-1)}{2 c}- \\
& \frac{6 \mathrm{I} a b^{2} \operatorname{arccot}\left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right) \text { polylog }\left(2,-\frac{\mathrm{I}+\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}}{\sqrt{\frac{-c x+1}{c x+1}+1}}\right)}{c}
\end{aligned}
$$

$+\frac{3 \mathrm{I} a b^{2} \operatorname{arccot}\left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right) \operatorname{polylog}\left(2,-\frac{\left(\mathrm{I}+\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)^{2}}{\frac{-c x+1}{c x+1}+1}\right)}{c}-\frac{6 \mathrm{I} a b^{2} \operatorname{arccot}\left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right) \operatorname{polylog}\left(2, \frac{\mathrm{I}+\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}}{\sqrt{\frac{-c x+1}{c x+1}+1}}\right)}{c}$

$$
+\underline{b^{3} \operatorname{arccot}\left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)^{3} \ln \left(1+\frac{\mathrm{I}+\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}}{\sqrt{\frac{-c x+1}{c x+1}+1}}\right)}
$$

$$
6 b^{3} \operatorname{arccot}\left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right) \operatorname{polylog}\left(3,-\frac{\mathrm{I}+\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}}{\sqrt{\frac{-c x+1}{c x+1}+1}}\right)
$$

$$
-\frac{b^{3} \operatorname{arccot}\left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)^{3} \ln \left(1+\frac{\left(\mathrm{I}+\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)^{2}}{\frac{-c x+1}{c x+1}+1}\right)}{c}-\frac{3 b^{3} \operatorname{arccot}\left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right) \operatorname{polylog}\left(3,-\frac{\left(\mathrm{I}+\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)^{2}}{\frac{-c x+1}{c x+1}+1}\right)}{2 c}
$$

$$
+\underline{b^{3} \operatorname{arccot}\left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)^{3} \ln \left(1-\frac{\mathrm{I}+\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}}{\sqrt{\frac{-c x+1}{c x+1}+1}}\right)}
$$

$$
6 b^{3} \operatorname{arccot}\left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right) \text { polylog }\left(3, \frac{\mathrm{I}+\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}}{\sqrt{\frac{-c x+1}{c x+1}+1}}\right)
$$

$$
+\frac{6 \text { I } b^{3} \text { polylog }\left(4,-\frac{\mathrm{I}+\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}}{\sqrt{\frac{-c x+1}{c x+1}+1}}\right)}{c}
$$

$$
-\frac{3 \mathrm{I} b^{3} \text { polylog }\left(4,-\frac{\left(\mathrm{I}+\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)^{2}}{\frac{-c x+1}{c x+1}+1}\right)}{4 c}
$$

$$
+\frac{6 \mathrm{I} b^{3} \text { polylog }\left(4, \frac{\mathrm{I}+\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}}{\sqrt{\frac{-c x+1}{c x+1}+1}}\right)}{c}
$$

Problem 48: Result more than twice size of optimal antiderivative.

$$
\int x \operatorname{arccot}(c-(1-\mathrm{I} c) \tan (b x+a)) \mathrm{d} x
$$

Optimal(type 4, 99 leaves, 6 steps):

$$
-\frac{b x^{3}}{6}+\frac{x^{2} \operatorname{arccot}(c-(1-\mathrm{I} c) \tan (b x+a))}{2}-\frac{\mathrm{I} x^{2} \ln \left(1+\mathrm{I} c \mathrm{c}^{2 \mathrm{I} a+2 \mathrm{I} b x}\right)}{4}-\frac{x \operatorname{poly} \log \left(2,-\mathrm{I} c \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}\right)}{4 b}-\frac{\mathrm{Ipoly} \log \left(3,-\mathrm{I} c \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}\right)}{8 b^{2}}
$$

Result (type 4, 1491 leaves):

$$
\begin{aligned}
& \left.\left.-\frac{x^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}(c+\mathrm{I})}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)^{3}}{8}+\frac{x^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(c \mathrm{e}^{2 \mathrm{I}(b x+a)}-\mathrm{I}\right)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)^{3}}{8}-\frac{x^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{Ie} 2}{\mathrm{I}^{2 \mathrm{I}(b x+a)}(c+\mathrm{I})}\right.}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)^{3}\right) ~ 8 \quad-\frac{\operatorname{polylog}\left(2,-\mathrm{I} c \mathrm{e}^{2 \mathrm{I}(b x+a)}\right) a}{4 b^{2}} \\
& +\frac{a \operatorname{dilog}\left(1+\mathrm{Ie}^{\mathrm{I}(b x+a)} \sqrt{\mathrm{I} c}\right)}{2 b^{2}}+\frac{a \operatorname{dilog}\left(1-\mathrm{Ie}^{\mathrm{I}(b x+a)} \sqrt{\mathrm{I} c}\right)}{2 b^{2}}-\frac{x^{2} \pi \operatorname{csgn}\left(\mathrm{Ie}^{2 \mathrm{I}(b x+a)}\right)^{3}}{8}-\frac{x^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{e}^{2 \mathrm{I}(b x+a)}(c+\mathrm{I})}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)^{3}}{8} \\
& +\frac{x^{2} \pi \operatorname{csgn}\left(\frac{c \mathrm{e}^{2 \mathrm{I}(b x+a)}-\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)^{2}}{8}-\frac{x^{2} \pi \operatorname{csgn}\left(\frac{c \mathrm{e}^{2 \mathrm{I}(b x+a)}-\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)^{3}}{8}-\frac{b x^{3}}{6}-\frac{x \operatorname{poly} \log \left(2,-\mathrm{I} c \mathrm{e}^{2 \mathrm{I}(b x+a)}\right)}{4 b}-\frac{\mathrm{I} \operatorname{poly} \log \left(3,-\mathrm{I} c \mathrm{e}^{2 \mathrm{I}(b x+a)}\right)}{8 b^{2}} \\
& +\frac{x^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{e}^{2 \mathrm{I}(b x+a)}(c+\mathrm{I})}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)^{2}}{8}+\frac{\mathrm{I} x^{2} \ln \left(c \mathrm{e}^{2 \mathrm{I}(b x+a)}-\mathrm{I}\right)}{4}-\frac{\mathrm{I} x^{2} \ln (c+\mathrm{I})}{4}+\frac{\mathrm{I} a \ln \left(1+\mathrm{Ie}^{\mathrm{I}(b x+a)} \sqrt{\mathrm{I} c}\right) x}{2 b} \\
& -x^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right) \operatorname{csgn}(\mathrm{I}(c+\mathrm{I})) \operatorname{csgn}\left(\frac{\mathrm{I}(c+\mathrm{I})}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right) \\
& 8 \\
& +\frac{x^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right) \operatorname{csgn}\left(\mathrm{I}\left(c \mathrm{e}^{2 \mathrm{I}(b x+a)}-\mathrm{I}\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(c \mathrm{e}^{2 \mathrm{I}(b x+a)}-\mathrm{I}\right)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)}{8} \\
& -\frac{x^{2} \pi \operatorname{csgn}\left(\mathrm{I}^{2 \mathrm{I}(b x+a)}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(c+\mathrm{I})}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)}(c+\mathrm{I})}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)}{8}+\frac{x^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(c \mathrm{e}^{2 \mathrm{I}(b x+a)}-\mathrm{I}\right)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right) \operatorname{csgn}\left(\frac{c \mathrm{e}^{2 \mathrm{I}(b x+a)}-\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)}{8} \\
& -\frac{\mathrm{I} x^{2} \ln \left(\mathrm{e}^{\mathrm{I}(b x+a)}\right)}{2}+\frac{x^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(c+\mathrm{I})}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)^{2}}{8}-\frac{\mathrm{I} a^{2} \ln \left(-c \mathrm{e}^{2 \mathrm{I}(b x+a)}+\mathrm{I}\right)}{4 b^{2}}+\frac{\mathrm{I} a^{2} \ln \left(1+\mathrm{I} \mathrm{e}^{\mathrm{I}(b x+a)} \sqrt{\mathrm{I} c}\right)}{2 b^{2}} \\
& +\frac{\mathrm{I} a^{2} \ln \left(1-\mathrm{I} \mathrm{e}^{\mathrm{I}(b x+a)} \sqrt{\mathrm{I} c}\right)}{2 b^{2}}-\frac{\mathrm{I} x^{2} \ln \left(1+\mathrm{I} c \mathrm{e}^{2 \mathrm{I}(b x+a)}\right)}{4}-\frac{x^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(c \mathrm{e}^{2 \mathrm{I}(b x+a)}-\mathrm{I}\right)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right) \operatorname{csgn}\left(\frac{c \mathrm{e}^{2 \mathrm{I}(b x+a)}-\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)^{2}}{8}-\frac{\mathrm{I} \ln \left(1+\mathrm{I} c \mathrm{e}^{2 \mathrm{I}(b x+a)}\right) a^{2}}{4 b^{2}} \\
& -\frac{x^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)}(c+\mathrm{I})}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{e}^{2 \mathrm{I}(b x+a)}(c+\mathrm{I})}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)}{8}+\frac{x^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)}(c+\mathrm{I})}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{e}^{2 \mathrm{I}(b x+a)}(c+\mathrm{I})}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)^{2}}{8} \\
& -\frac{x^{2} \pi \operatorname{csgn}\left(\mathrm{I}\left(c \mathrm{e}^{2 \mathrm{I}(b x+a)}-\mathrm{I}\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(c \mathrm{e}^{2 \mathrm{I}(b x+a)}-\mathrm{I}\right)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)^{2}}{8}+\frac{x^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}(c+\mathrm{I})}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)}(c+\mathrm{I})}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)^{2}}{8}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{x^{2} \pi \operatorname{csgn}\left(\mathrm{Ie}^{2 \mathrm{I}(b x+a)}\right) \operatorname{csgn}\left(\frac{\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)}(c+\mathrm{I})}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)^{2}}{8}+\frac{x^{2} \pi \operatorname{csgn}(\mathrm{I}(c+\mathrm{I})) \operatorname{csgn}\left(\frac{\mathrm{I}(c+\mathrm{I})}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)^{2}}{8}-\frac{x^{2} \pi \operatorname{csgn}\left(\mathrm{Ie}^{\mathrm{I}(b x+a)}\right)^{2} \operatorname{csgn}\left(\mathrm{Ie} \mathrm{e}^{2 \mathrm{I}(b x+a)}\right)}{8} \\
& +\frac{x^{2} \pi \operatorname{csgn}\left(\mathrm{I}^{\mathrm{I}(b x+a)}\right) \operatorname{csgn}\left(\mathrm{Ie}^{2 \mathrm{I}(b x+a)}\right)^{2}}{4}-\frac{x^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(c \mathrm{e}^{2 \mathrm{I}(b x+a)}-\mathrm{I}\right)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)^{2}}{8}+\frac{\mathrm{I} a \ln \left(1-\mathrm{Ie}^{\mathrm{I}(b x+a)} \sqrt{\mathrm{I} c}\right) x}{2 b} \\
& -\frac{\mathrm{I} \ln \left(1+\mathrm{I} c \mathrm{e}^{2 \mathrm{I}(b x+a)}\right) x a}{2 b}
\end{aligned}
$$

Problem 49: Result more than twice size of optimal antiderivative.
$\int x^{2} \operatorname{arccot}(c+d \tanh (b x+a)) \mathrm{d} x$
Optimal(type 4, 305 leaves, 11 steps):
$\frac{x^{3} \operatorname{arccot}(c+d \tanh (b x+a))}{3}-\frac{\mathrm{I} x^{3} \ln \left(1+\frac{(\mathrm{I}-c-d) \mathrm{e}^{2 b x+2 a}}{\mathrm{I}-c+d}\right)}{6}+\frac{\mathrm{I} x^{3} \ln \left(1+\frac{(\mathrm{I}+c+d) \mathrm{e}^{2 b x+2 a}}{\mathrm{I}+c-d}\right)}{6}-\frac{\mathrm{I} x^{2} \operatorname{polylog}\left(2,-\frac{(\mathrm{I}-c-d) \mathrm{e}^{2 b x+2 a}}{\mathrm{I}-c+d}\right)}{4 b}$

$$
+\frac{\mathrm{I} x^{2} \operatorname{polylog}\left(2,-\frac{(\mathrm{I}+c+d) \mathrm{e}^{2 b x+2 a}}{\mathrm{I}+c-d}\right)}{4 b}+\frac{\mathrm{I} x \operatorname{polylog}\left(3,-\frac{(\mathrm{I}-c-d) \mathrm{e}^{2 b x+2 a}}{\mathrm{I}-c+d}\right)}{4 b^{2}}-\frac{\mathrm{I} x \operatorname{poly} \log \left(3,-\frac{(\mathrm{I}+c+d) \mathrm{e}^{2 b x+2 a}}{\mathrm{I}+c-d}\right)}{4 b^{2}}
$$

$$
-\frac{\mathrm{I} \text { polylog }\left(4,-\frac{(\mathrm{I}-c-d) \mathrm{e}^{2 b x+2 a}}{\mathrm{I}-c+d}\right)}{8 b^{3}}+\frac{\mathrm{I} \operatorname{polylog}\left(4,-\frac{(\mathrm{I}+c+d) \mathrm{e}^{2 b x+2 a}}{\mathrm{I}+c-d}\right)}{8 b^{3}}
$$

Result(type ?, 6983 leaves): Display of huge result suppressed!
Problem 50: Result more than twice size of optimal antiderivative.

$$
\int \operatorname{arccot}(c+d \tanh (b x+a)) \mathrm{d} x
$$

Optimal(type 4, 150 leaves, 7 steps):
$x \operatorname{arccot}(c+d \tanh (b x+a))-\frac{\mathrm{I} x \ln \left(1+\frac{(\mathrm{I}-c-d) \mathrm{e}^{2 b x+2 a}}{\mathrm{I}-c+d}\right)}{2}+\frac{\mathrm{I} x \ln \left(1+\frac{(\mathrm{I}+c+d) \mathrm{e}^{2 b x+2 a}}{\mathrm{I}+c-d}\right)}{2}-\frac{\mathrm{I} \operatorname{poly} \log \left(2,-\frac{(\mathrm{I}-c-d) \mathrm{e}^{2 b x+2 a}}{\mathrm{I}-c+d}\right)}{4 b}$

$$
+\frac{\mathrm{Ipolylog}\left(2,-\frac{(\mathrm{I}+c+d) \mathrm{e}^{2 b x+2 a}}{\mathrm{I}+c-d}\right)}{4 b}
$$

Result(type 4, 349 leaves):
$-\frac{\operatorname{arccot}(c+d \tanh (b x+a)) \ln (d \tanh (b x+a)-d)}{2 b}+\frac{\operatorname{arccot}(c+d \tanh (b x+a)) \ln (d \tanh (b x+a)+d)}{2 b}$

Problem 51: Result more than twice size of optimal antiderivative.

$$
\int x \operatorname{arccot}(c-(\mathrm{I}-c) \tanh (b x+a)) \mathrm{d} x
$$

Optimal(type 4, 95 leaves, 6 steps):

$$
-\frac{\mathrm{I} b x^{3}}{6}+\frac{x^{2} \operatorname{arccot}(c-(\mathrm{I}-c) \tanh (b x+a))}{2}+\frac{\mathrm{I} x^{2} \ln \left(1-\mathrm{I} c \mathrm{e}^{2 b x+2 a}\right)}{4}+\frac{\mathrm{I} x \operatorname{poly} \log \left(2, \mathrm{I} c \mathrm{e}^{2 b x+2 a}\right)}{4 b}-\frac{\mathrm{I} \operatorname{poly} \log \left(3, \mathrm{I} c \mathrm{e}^{2 b x+2 a}\right)}{8 b^{2}}
$$

Result(type 4, 1533 leaves):
$\pi x^{2} \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 b x+2 a}+1}\right) \operatorname{csgn}\left(\mathrm{I}\left(2 \mathrm{I}^{2 b x+2 a}-2 \mathrm{e}^{2 b x+2 a} c\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(2 \mathrm{Ie}^{2 b x+2 a}-2 \mathrm{e}^{2 b x+2 a} c\right)}{\mathrm{e}^{2 b x+2 a}+1}\right)$
8
$-\frac{\pi x^{2} \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 b x+2 a}+1}\right) \operatorname{csgn}\left(\mathrm{I}\left(-2 \mathrm{e}^{2 b x+2 a} c-2 \mathrm{I}\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(-2 \mathrm{e}^{2 b x+2 a} c-2 \mathrm{I}\right)}{\mathrm{e}^{2 b x+2 a}+1}\right)}{8}+\frac{\mathrm{I} \ln \left(1-\mathrm{I} c \mathrm{e}^{2 b x+2 a}\right) a^{2}}{4 b^{2}}+\frac{\mathrm{I} \operatorname{polylog}\left(2, \mathrm{I} c \mathrm{e}^{2 b x+2 a}\right) a}{4 b^{2}}$
$-\frac{\mathrm{I} a^{2} \ln \left(1-\mathrm{I} \mathrm{e}^{b x+a} \sqrt{-\mathrm{I} c}\right)}{2 b^{2}}-\frac{\mathrm{I} a^{2} \ln \left(1+\mathrm{Ie}^{b x+a} \sqrt{-\mathrm{I} c}\right)}{2 b^{2}}-\frac{\mathrm{I} a \operatorname{dilog}\left(1-\mathrm{Ie}^{b x+a} \sqrt{-\mathrm{I} c}\right)}{2 b^{2}}-\frac{\mathrm{I} a \operatorname{dilog}\left(1+\mathrm{Ie}{ }^{b x+a} \sqrt{-\mathrm{I} c}\right)}{2 b^{2}}$
$+\frac{\mathrm{I} x \operatorname{poly} \log \left(2, \mathrm{I} c \mathrm{e}^{2 b x+2 a}\right)}{4 b}-\frac{a^{3}}{3 b^{2}(\mathrm{I}-c)}+\frac{b x^{3}}{6(\mathrm{I}-c)}+\frac{\mathrm{I} x^{2} \ln \left(1-\mathrm{I} c \mathrm{e}^{2 b x+2 a}\right)}{4}-\frac{\mathrm{I} \operatorname{poly} \log \left(3, \mathrm{I} c \mathrm{e}^{2 b x+2 a}\right)}{8 b^{2}}-\frac{\mathrm{I} c x a^{2}}{2 b(\mathrm{I}-c)}+\frac{\mathrm{I} c a^{2} \ln \left(\mathrm{e}^{b x+a}\right)}{2 b^{2}(\mathrm{I}-c)}$
$-\frac{\mathrm{I} x^{2} \ln \left(-2 \mathrm{e}^{2 b x+2 a} c-2 \mathrm{I}\right)}{4}+\frac{\mathrm{I} x^{2} \ln \left(2 \mathrm{I}^{2 b x+2 a}-2 \mathrm{e}^{2 b x+2 a} c\right)}{4}-\frac{\pi x^{2} \operatorname{csgn}\left(\frac{-2 \mathrm{e}^{2 b x+2 a} c-2 \mathrm{I}}{\mathrm{e}^{2 b x+2 a}+1}\right)^{2}}{8}-\frac{\pi x^{2} \operatorname{csgn}\left(\frac{2 \mathrm{I} \mathrm{e}^{2 b x+2 a}-2 \mathrm{e}^{2 b x+2 a} c}{\mathrm{e}^{2 b x+2 a}+1}\right)^{2}}{8}$
$+\frac{\pi x^{2} \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 b x+2 a}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(-2 \mathrm{e}^{2 b x+2 a} c-2 \mathrm{I}\right)}{\mathrm{e}^{2 b x+2 a}+1}\right)^{2}}{8}+\frac{\pi x^{2} \operatorname{csgn}\left(\mathrm{I}\left(-2 \mathrm{e}^{2 b x+2 a} c-2 \mathrm{I}\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(-2 \mathrm{e}^{2 b x+2 a} c-2 \mathrm{I}\right)}{\mathrm{e}^{2 b x+2 a}+1}\right)^{2}}{8}$
$-\frac{\pi x^{2} \operatorname{csgn}\left(\frac{\mathrm{I}\left(-2 \mathrm{e}^{2 b x+2 a} c-2 \mathrm{I}\right)}{\mathrm{e}^{2 b x+2 a}+1}\right) \operatorname{csgn}\left(\frac{-2 \mathrm{e}^{2 b x+2 a} c-2 \mathrm{I}}{\mathrm{e}^{2 b x+2 a}+1}\right)}{8}-\frac{\pi x^{2} \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 b x+2 a}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(2 \mathrm{I} \mathrm{e}^{2 b x+2 a}-2 \mathrm{e}^{2 b x+2 a} c\right)}{\mathrm{e}^{2 b x+2 a}+1}\right)^{2}}{8}$

$$
\left.\begin{array}{l}
-\frac{\pi x^{2} \operatorname{csgn}\left(\mathrm{I}\left(2 \mathrm{Ie}^{2 b x+2 a}-2 \mathrm{e}^{2 b x+2 a} c\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(2 \mathrm{Ie}^{2 b x+2 a}-2 \mathrm{e}^{2 b x+2 a} c\right)}{\mathrm{e}^{2 b x+2 a}+1}\right)^{2}}{8} \\
\left.-\frac{\pi x^{2} \operatorname{csgn}\left(\frac{\mathrm{I}\left(2 \mathrm{Ie}^{2 b x+2 a}-2 \mathrm{e}^{2 b x+2 a} c\right)}{\mathrm{e}^{2 b x+2 a}+1}\right) \operatorname{csgn}\left(\frac{2 \mathrm{Ie}^{2 b x+2 a}-2 \mathrm{e}^{2 b x+2 a} c}{\mathrm{e}^{2 b x+2 a}+1}\right)^{2}}{8}+\frac{\pi x^{2} \operatorname{csgn}\left(\frac{2 \mathrm{Ie}^{2 b x+2 a}-2 \mathrm{e}^{2 b x+2 a} c}{\mathrm{e}^{2 b x+2 a}+1}\right.}{8}\right)^{3} \\
-\frac{\pi x^{2} \operatorname{csgn}\left(\frac{\mathrm{I}\left(-2 \mathrm{e}^{2 b x+2 a} c-2 \mathrm{I}\right)}{\mathrm{e}^{2 b x+2 a}+1}\right)^{3}}{8}+\frac{\pi x^{2} \operatorname{csgn}\left(\frac{-2 \mathrm{e}^{2 b x+2 a} c-2 \mathrm{I}}{\mathrm{e}^{2 b x+2 a}+1}\right)^{3}}{8}+\frac{\pi x^{2} \operatorname{csgn}\left(\frac{\mathrm{I}\left(2 \mathrm{I} \mathrm{e}^{2 b x+2 a}-2 \mathrm{e}^{2 b x+2 a} c\right)}{\mathrm{e}^{2 b x+2 a}+1}\right)^{3}}{8} \\
+\frac{\pi x^{2} \operatorname{csgn}\left(\frac{\mathrm{I}\left(-2 \mathrm{e}^{2 b x+2 a} c-2 \mathrm{I}\right)}{\mathrm{e}^{2 b x+2 a}+1}\right) \operatorname{csgn}\left(\frac{-2 \mathrm{e}^{2 b x+2 a} c-2 \mathrm{I}}{\mathrm{e}^{2 b x+2 a}+1}\right)^{2}}{8}+\frac{\mathrm{I} a^{2} \ln \left(\mathrm{e}^{2 b x+2 a} c+\mathrm{I}\right)}{4 b^{2}} \\
+\frac{\pi x^{2} \operatorname{csgn}\left(\frac{\mathrm{I}\left(2 \mathrm{I}^{2 b x+2 a}-2 \mathrm{e}^{2 b x+2 a} c\right)}{\mathrm{e}^{2 b x+2 a}+1}\right) \operatorname{csgn}\left(\frac{2 \mathrm{I} \mathrm{e}^{2 b x+2 a}-2 \mathrm{e}^{2 b x+2 a} c}{\mathrm{e}^{2 b x+2 a}+1}\right)}{8}+\frac{\mathrm{I} b c x^{3}}{6(\mathrm{I}-c)}-\frac{\mathrm{I} c a^{3}}{3 b^{2}(\mathrm{I}-c)}+\frac{\mathrm{I} \ln \left(1-\mathrm{I} c \mathrm{e}^{2 b x+2 a}\right) x a}{2 b}
\end{array}\right) .
$$

Problem 52: Result more than twice size of optimal antiderivative.

$$
\int(f x+e)^{3} \operatorname{arccot}(\operatorname{coth}(b x+a)) d x
$$

Optimal(type 4, 254 leaves, 12 steps):
$\frac{(f x+e)^{4} \operatorname{arccot}(\operatorname{coth}(b x+a))}{4 f}-\frac{(f x+e)^{4} \arctan \left(\mathrm{e}^{2 b x+2 a}\right)}{4 f}+\frac{\mathrm{I}(f x+e)^{3} \operatorname{polylog}\left(2,-\mathrm{Ie}^{2 b x+2 a}\right)}{4 b}-\frac{\mathrm{I}(f x+e)^{3} \operatorname{polylog}\left(2, \mathrm{Ie}{ }^{2 b x+2 a}\right)}{4 b}$

$$
\begin{aligned}
& -\frac{3 \mathrm{I} f(f x+e)^{2} \operatorname{polylog}\left(3,-\mathrm{Ie}^{2 b x+2 a}\right)}{8 b^{2}}+\frac{3 \mathrm{I} f(f x+e)^{2} \operatorname{polylog}\left(3, \mathrm{I} \mathrm{e}^{2 b x+2 a}\right)}{8 b^{2}}+\frac{3 \mathrm{I} f^{2}(f x+e) \operatorname{poly} \log \left(4,-\mathrm{I} \mathrm{e}^{2 b x+2 a}\right)}{8 b^{3}} \\
& -\frac{3 \mathrm{I} f^{2}(f x+e) \operatorname{poly} \log \left(4, \mathrm{I} \mathrm{e}^{2 b x+2 a}\right)}{8 b^{3}}-\frac{3 \mathrm{I} f^{3} \operatorname{polylog}\left(5,-\mathrm{Ie}^{2 b x+2 a}\right)}{16 b^{4}}+\frac{3 \mathrm{I} f^{3} \operatorname{poly} \log \left(5, \mathrm{Ie} \mathrm{e}^{2 b x+2 a}\right)}{16 b^{4}}
\end{aligned}
$$

Result(type ?, 7274 leaves): Display of huge result suppressed!
Problem 53: Result more than twice size of optimal antiderivative.
$\int x^{2} \operatorname{arccot}(c+d \operatorname{coth}(b x+a)) \mathrm{d} x$
Optimal(type 4, 301 leaves, 11 steps):
$\frac{x^{3} \operatorname{arccot}(c+d \operatorname{coth}(b x+a))}{3}-\frac{\mathrm{I} x^{3} \ln \left(1-\frac{(\mathrm{I}-c-d) \mathrm{e}^{2 b x+2 a}}{\mathrm{I}-c+d}\right)}{6}+\frac{\mathrm{I} x^{3} \ln \left(1-\frac{(\mathrm{I}+c+d) \mathrm{e}^{2 b x+2 a}}{\mathrm{I}+c-d}\right)}{6}-\frac{\mathrm{I} x^{2} \operatorname{polylog}\left(2, \frac{(\mathrm{I}-c-d) \mathrm{e}^{2 b x+2 a}}{\mathrm{I}-c+d}\right)}{4 b}$

$$
\begin{aligned}
& +\frac{\mathrm{I} x^{2} \operatorname{polylog}\left(2, \frac{(\mathrm{I}+c+d) \mathrm{e}^{2 b x+2 a}}{\mathrm{I}+c-d}\right)}{4 b}+\frac{\mathrm{I} x \operatorname{poly} \log \left(3, \frac{(\mathrm{I}-c-d) \mathrm{e}^{2 b x+2 a}}{\mathrm{I}-c+d}\right)}{4 b^{2}}-\frac{\mathrm{I} x \operatorname{poly} \log \left(3, \frac{(\mathrm{I}+c+d) \mathrm{e}^{2 b x+2 a}}{\mathrm{I}+c-d}\right)}{4 b^{2}} \\
& -\frac{\mathrm{I} \operatorname{poly} \log \left(4, \frac{(\mathrm{I}-c-d) \mathrm{e}^{2 b x+2 a}}{\mathrm{I}-c+d}\right)}{8 b^{3}}+\frac{\mathrm{I} \operatorname{poly} \log \left(4, \frac{(\mathrm{I}+c+d) \mathrm{e}^{2 b x+2 a}}{\mathrm{I}+c-d}\right)}{8 b^{3}}
\end{aligned}
$$

Result(type ?, 6911 leaves): Display of huge result suppressed!
Problem 54: Result more than twice size of optimal antiderivative.

$$
\int \operatorname{arccot}(c+d \operatorname{coth}(b x+a)) \mathrm{d} x
$$

Optimal(type 4, 150 leaves, 7 steps):
$x \operatorname{arccot}(c+d \operatorname{coth}(b x+a))-\frac{\mathrm{I} x \ln \left(1-\frac{(\mathrm{I}-c-d) \mathrm{e}^{2 b x+2 a}}{\mathrm{I}-c+d}\right)}{2}+\frac{\mathrm{I} x \ln \left(1-\frac{(\mathrm{I}+c+d) \mathrm{e}^{2 b x+2 a}}{\mathrm{I}+c-d}\right)}{2}-\frac{\mathrm{I} \operatorname{poly} \log \left(2, \frac{(\mathrm{I}-c-d) \mathrm{e}^{2 b x+2 a}}{\mathrm{I}-c+d}\right)}{4 b}$

$$
+\frac{\mathrm{I} \text { polylog }\left(2, \frac{(\mathrm{I}+c+d) \mathrm{e}^{2 b x+2 a}}{\mathrm{I}+c-d}\right)}{4 b}
$$

Result(type 4, 349 leaves):
$-\frac{\operatorname{arccot}(c+d \operatorname{coth}(b x+a)) \ln (d \operatorname{coth}(b x+a)-d)}{2 b}+\frac{\operatorname{arccot}(c+d \operatorname{coth}(b x+a)) \ln (d \operatorname{coth}(b x+a)+d)}{2 b}$

$$
\begin{aligned}
& +\frac{\mathrm{I} \ln (d \operatorname{coth}(b x+a)-d) \ln \left(\frac{\mathrm{I}-d \operatorname{coth}(b x+a)-c}{\mathrm{I}-c-d}\right)}{4 b}-\frac{\mathrm{I} \ln (d \operatorname{coth}(b x+a)-d) \ln \left(\frac{d \operatorname{coth}(b x+a)+c+\mathrm{I}}{\mathrm{I}+c+d}\right)}{4 b} \\
& +\frac{\mathrm{I} \operatorname{dilog}\left(\frac{\mathrm{I}-d \operatorname{coth}(b x+a)-c}{\mathrm{I}-c-d}\right)}{4 b}-\frac{\mathrm{I} \operatorname{dilog}\left(\frac{d \operatorname{coth}(b x+a)+c+\mathrm{I}}{\mathrm{I}+c+d}\right)}{4 b}-\frac{\mathrm{I} \ln (d \operatorname{coth}(b x+a)+d) \ln \left(\frac{\mathrm{I}-d \operatorname{coth}(b x+a)-c}{\mathrm{I}-c+d}\right)}{4 b} \\
& +\frac{\mathrm{I} \ln (d \operatorname{coth}(b x+a)+d) \ln \left(\frac{d \operatorname{coth}(b x+a)+c+\mathrm{I}}{\mathrm{I}+c-d}\right)}{4 b}-\frac{\mathrm{I} \operatorname{dilog}\left(\frac{\mathrm{I}-d \operatorname{coth}(b x+a)-c}{\mathrm{I}-c+d}\right)}{4 b}+\frac{\mathrm{I} \operatorname{dilog}\left(\frac{d \operatorname{coth}(b x+a)+c+\mathrm{I}}{\mathrm{I}+c-d}\right)}{4 b}
\end{aligned}
$$

Problem 56: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(a+b \operatorname{arccot}\left(c x^{n}\right)\right)\left(d+e \ln \left(f x^{m}\right)\right)}{x} \mathrm{~d} x
$$

Optimal(type 4, 161 leaves, 13 steps):
$a d \ln (x)+\frac{a e \ln \left(f x^{m}\right)^{2}}{2 m}-\frac{\mathrm{I} b d \text { polylog }\left(2, \frac{-\mathrm{I}}{c x^{n}}\right)}{2 n}-\frac{\mathrm{I} b e \ln \left(f x^{m}\right) \operatorname{polylog}\left(2, \frac{-\mathrm{I}}{c x^{n}}\right)}{2 n}+\frac{\mathrm{I} b d \operatorname{poly} \log \left(2, \frac{\mathrm{I}}{c x^{n}}\right)}{2 n}+\frac{\mathrm{I} b e \ln \left(f x^{m}\right) \operatorname{poly} \log \left(2, \frac{\mathrm{I}}{c x^{n}}\right)}{2 n}$

$$
-\frac{\mathrm{I} b \text { e } m \text { polylog }\left(3, \frac{-\mathrm{I}}{c x^{n}}\right)}{2 n^{2}}+\frac{\mathrm{I} \text { bem polylog }\left(3, \frac{\mathrm{I}}{c x^{n}}\right)}{2 n^{2}}
$$

Result(type 4, 1057 leaves):
$\frac{\mathrm{I} \operatorname{dilog}\left(1-\mathrm{I} c x^{n}\right) b d}{2 n}-\frac{\mathrm{I} \operatorname{dilog}\left(1+\mathrm{I} c x^{n}\right) b d}{2 n}-\frac{\mathrm{I} e b m \operatorname{poly} \log \left(3, \mathrm{I} c x^{n}\right)}{2 n^{2}}+\frac{\mathrm{I} e b \operatorname{dilog}\left(-\mathrm{I}\left(c x^{n}+\mathrm{I}\right)\right) \ln \left(x^{m}\right)}{2 n}-\frac{\mathrm{I} e b \ln \left(-\mathrm{I}\left(c x^{n}+\mathrm{I}\right)\right) \ln (x)^{2} m}{2}$

$$
\begin{aligned}
& +\frac{\mathrm{I} e b \ln \left(-\mathrm{I}\left(c x^{n}+\mathrm{I}\right)\right) \ln \left(x^{m}\right) \ln (x)}{2}+\frac{\mathrm{I} \operatorname{dilog}\left(1-\mathrm{I} c x^{n}\right) \ln (f) b e}{2 n}-\frac{\operatorname{dilog}\left(1+\mathrm{I} c x^{n}\right) \pi b e \operatorname{csgn}(\mathrm{I} f) \operatorname{csgn}\left(\mathrm{I} x^{m}\right) \operatorname{csgn}\left(\mathrm{I} f x^{m}\right)}{4 n} \\
& +\frac{\operatorname{dilog}\left(1-\mathrm{I} c x^{n}\right) \pi b e \operatorname{csgn}(\mathrm{I} f) \operatorname{csgn}\left(\mathrm{I} x^{m}\right) \operatorname{csgn}\left(\mathrm{I} f x^{m}\right)}{4 n}+\frac{\mathrm{I} \pi^{2} \ln \left(x^{n}\right) b e \operatorname{csgn}(\mathrm{I} f) \operatorname{csgn}\left(\mathrm{I} f x^{m}\right)^{2}}{4 n}+\frac{\mathrm{I} \pi \ln \left(x^{n}\right) a e \operatorname{csgn}(\mathrm{I} f) \operatorname{csgn}\left(\mathrm{I} f x^{m}\right)^{2}}{2 n} \\
& +\frac{\mathrm{I} \pi^{2} \ln \left(x^{n}\right) b e \operatorname{csgn}\left(\mathrm{I} x^{m}\right) \operatorname{csgn}\left(\mathrm{I} f x^{m}\right)^{2}}{4 n}+\frac{\mathrm{I} \pi \ln \left(x^{n}\right) a e \operatorname{csgn}\left(\mathrm{I} x^{m}\right) \operatorname{csgn}\left(\mathrm{I} f x^{m}\right)^{2}}{2 n}-\frac{\mathrm{I} e b \ln \left(-\mathrm{I}\left(-c x^{n}+\mathrm{I}\right)\right) \ln \left(-\mathrm{I} c x^{n}\right) m \ln (x)}{2 n}+\frac{\ln \left(x^{n}\right) a d}{n} \\
& +\frac{e \ln \left(x^{m}\right)^{2} a}{2 m}-\frac{\mathrm{I} \operatorname{dilog}\left(1+\mathrm{I} c x^{n}\right) \ln (f) b e}{2 n}+\frac{\ln \left(x^{n}\right) \ln (f) a e}{n}+\frac{\pi \ln \left(x^{n}\right) b d}{2 n}+\frac{e \ln \left(x^{m}\right)^{2} b \pi}{4 m}+\frac{\pi \ln \left(x^{n}\right) \ln (f) b e}{2 n} \\
& +\frac{\operatorname{dilog}\left(1-\mathrm{I} c x^{n}\right) \pi b e \operatorname{csgn}\left(\mathrm{I} f x^{m}\right)^{3}}{4 n}-\frac{\operatorname{dilog}\left(1+\mathrm{I} c x^{n}\right) \pi b e \operatorname{csgn}\left(\mathrm{I} f x^{m}\right)^{3}}{4 n}-\frac{\mathrm{I} e b \ln \left(1+\mathrm{I} c x^{n}\right) m \ln (x)^{2}}{2}+\frac{\mathrm{I} e b \ln \left(1+\mathrm{I} c x^{n}\right) \ln \left(x^{m}\right) \ln (x)}{2} \\
& +\frac{\mathrm{I} e b m \text { polylog }\left(3,-\mathrm{I} c x^{n}\right)}{2 n^{2}}+\frac{\mathrm{I} e b \ln \left(-\mathrm{I}\left(-c x^{n}+\mathrm{I}\right)\right) \ln (x)^{2} m}{2}-\frac{\mathrm{I} e b \ln \left(-\mathrm{I}\left(-c x^{n}+\mathrm{I}\right)\right) \ln \left(x^{m}\right) \ln (x)}{2}+\frac{\mathrm{I} e b \operatorname{dilog}\left(-\mathrm{I} c x^{n}\right) \ln \left(x^{m}\right)}{2 n} \\
& +\frac{\mathrm{I} e b \ln \left(1-\mathrm{I} c x^{n}\right) m \ln (x)^{2}}{2}-\frac{\mathrm{I} e b \ln \left(1-\mathrm{I} c x^{n}\right) \ln \left(x^{m}\right) \ln (x)}{2}-\frac{\operatorname{dilog}\left(1-\mathrm{I} c x^{n}\right) \pi b e \operatorname{csgn}\left(\mathrm{I} x^{m}\right) \operatorname{csgn}\left(\mathrm{I} f x^{m}\right)^{2}}{4 n} \\
& +\frac{\operatorname{dilog}\left(1+\mathrm{I} c x^{n}\right) \pi b e \operatorname{csgn}\left(\mathrm{I} x^{m}\right) \operatorname{csgn}\left(\mathrm{I} f x^{m}\right)^{2}}{4 n}-\frac{\operatorname{dilog}\left(1-\mathrm{I} c x^{n}\right) \pi b e \operatorname{csgn}(\mathrm{I} f) \operatorname{csgn}\left(\mathrm{I} f x^{m}\right)^{2}}{4 n}+\frac{\operatorname{dilog}\left(1+\mathrm{I} c x^{n}\right) \pi b e \operatorname{csgn}(\mathrm{I} f) \operatorname{csgn}\left(\mathrm{I} f x^{m}\right)^{2}}{4 n} \\
& -\frac{\mathrm{I} \pi \ln \left(x^{n}\right) a e \operatorname{csgn}\left(\mathrm{I} f x^{m}\right)^{3}}{2 n}-\frac{\mathrm{I} \pi^{2} \ln \left(x^{n}\right) b e \operatorname{csgn}\left(\mathrm{I} f x^{m}\right)^{3}}{4 n}-\frac{\mathrm{I} e b \operatorname{dilog}\left(-\mathrm{I}\left(c x^{n}+\mathrm{I}\right)\right) m \ln (x)}{2 n}-\frac{\mathrm{I} e b m \ln (x) \operatorname{polylog}\left(2,-\mathrm{I} c x^{n}\right)}{2 n} \\
& +\frac{\mathrm{I} e b \ln \left(-\mathrm{I}\left(-c x^{n}+\mathrm{I}\right)\right) \ln \left(-\mathrm{I} c x^{n}\right) \ln \left(x^{m}\right)}{2 n}-\frac{\mathrm{I} e b \operatorname{dilog}\left(-\mathrm{I} c x^{n}\right) m \ln (x)}{2 n}+\frac{\mathrm{I} e b m \ln (x) \operatorname{polylog}\left(2, \mathrm{I} c x^{n}\right)}{2 n} \\
& -\frac{\mathrm{I} \pi^{2} \ln \left(x^{n}\right) b e \operatorname{csgn}(\mathrm{I} f) \operatorname{csgn}\left(\mathrm{I} x^{m}\right) \operatorname{csgn}\left(\mathrm{I} f x^{m}\right)}{4 n}-\frac{\mathrm{I} \pi \ln \left(x^{n}\right) a e \operatorname{csgn}(\mathrm{I} f) \operatorname{csgn}\left(\mathrm{I} x^{m}\right) \operatorname{csgn}\left(\mathrm{I} f x^{m}\right)}{2 n}
\end{aligned}
$$

Problem 58: Result more than twice size of optimal antiderivative.

$$
\int \operatorname{arccot}\left(\mathrm{e}^{b x+a}\right) \mathrm{d} x
$$

Optimal(type 4, 41 leaves, 4 steps):

$$
-\frac{\mathrm{I} \text { polylog }\left(2,-\mathrm{I}^{-b x-a}\right)}{2 b}+\frac{\mathrm{I} \operatorname{poly} \log \left(2, \mathrm{I}^{-b x-a}\right)}{2 b}
$$

Result(type 4, 105 leaves):

$$
\frac{\ln \left(\mathrm{e}^{b x+a}\right) \operatorname{arccot}\left(\mathrm{e}^{b x+a}\right)}{b}-\frac{\mathrm{I} \ln \left(\mathrm{e}^{b x+a}\right) \ln \left(1+\mathrm{I}^{b x+a}\right)}{2 b}+\frac{\mathrm{I} \ln \left(\mathrm{e}^{b x+a}\right) \ln \left(1-\mathrm{Ie}^{b x+a}\right)}{2 b}-\frac{\mathrm{I} \operatorname{dilog}\left(1+\mathrm{Ie}^{b x+a}\right)}{2 b}+\frac{\mathrm{I} \operatorname{dilog}\left(1-\mathrm{I} \mathrm{e}^{b x+a}\right)}{2 b}
$$

Problem 59: Result more than twice size of optimal antiderivative.

$$
\int x \operatorname{arccot}\left(a+b f^{d x+c}\right) \mathrm{d} x
$$

Optimal(type 4, 218 leaves, 25 steps):

$$
\begin{aligned}
& -\frac{\mathrm{I} x^{2} \ln \left(1-\frac{b f^{d x+c}}{\mathrm{I}-a}\right)}{4}+\frac{\mathrm{I} x^{2} \ln \left(1+\frac{b f^{d x+c}}{\mathrm{I}+a}\right)}{4}+\frac{\mathrm{I} x^{2} \ln \left(1-\frac{\mathrm{I}}{a+b f^{d x+c}}\right)}{4}-\frac{\mathrm{I} x^{2} \ln \left(1+\frac{\mathrm{I}}{a+b f^{d x+c}}\right)}{4}-\frac{\mathrm{I} x \operatorname{polylog}\left(2, \frac{b f^{d x+c}}{\mathrm{I}-a}\right)}{2 d \ln (f)} \\
& +\frac{\mathrm{I} x \operatorname{polylog}\left(2,-\frac{b f^{d x+c}}{\mathrm{I}+a}\right)}{2 d \ln (f)}+\frac{\mathrm{I} \operatorname{polylog}\left(3, \frac{b f^{d x+c}}{\mathrm{I}-a}\right)}{2 d^{2} \ln (f)^{2}}-\frac{\mathrm{I} \operatorname{polylog}\left(3,-\frac{b f^{d x+c}}{\mathrm{I}+a}\right)}{2 d^{2} \ln (f)^{2}}
\end{aligned}
$$

Result(type 4, 657 leaves):

$$
\begin{aligned}
& \frac{\mathrm{I} \text { polylog }\left(3, \frac{\mathrm{I} b f^{d x+c}}{-\mathrm{I} a-1}\right)}{2 d^{2} \ln (f)^{2}}+\frac{\pi x^{2}}{4}-\frac{\mathrm{I} \operatorname{polylog}\left(3, \frac{\mathrm{I} b f^{d x+c}}{-\mathrm{I} a+1}\right)}{2 d^{2} \ln (f)^{2}}+\frac{\mathrm{I} x^{2} \ln \left(1+\mathrm{I}\left(a+b f^{d x+c}\right)\right)}{4}+\frac{\mathrm{I} \operatorname{polylog}\left(2, \frac{\mathrm{I} b f^{d x+c}}{-\mathrm{I} a+1}\right) x}{2 d \ln (f)}-\frac{\mathrm{I} c \ln \left(\frac{b f^{d x+c}+a+\mathrm{I}}{\mathrm{I}+a}\right) x}{2 d} \\
& -\frac{\mathrm{I} \ln \left(1-\frac{\mathrm{I} b f^{d x+c}}{-\mathrm{I} a-1}\right) c^{2}}{4 d^{2}}-\frac{\mathrm{I} \ln \left(1-\frac{\mathrm{I} b f^{d x+c}}{-\mathrm{I} a-1}\right) x c}{2 d}+\frac{\mathrm{I} c \ln \left(\frac{b f^{d x+c}+a-\mathrm{I}}{-\mathrm{I}+a}\right) x}{2 d}+\frac{\mathrm{I} c \operatorname{dilog}\left(\frac{b f^{d x+c}+a-\mathrm{I}}{-\mathrm{I}+a}\right)}{2 d^{2} \ln (f)}+\frac{\mathrm{I} \ln \left(1-\frac{\mathrm{I} b f^{d x+c}}{-\mathrm{I} a+1}\right) x c}{2 d} \\
& -\frac{\mathrm{I} x^{2} \ln \left(1-\mathrm{I}\left(a+b f^{d x+c}\right)\right)}{4}+\frac{\mathrm{I} c^{2} \ln \left(\frac{b f^{d x+c}+a-\mathrm{I}}{-\mathrm{I}+a}\right)}{2 d^{2}}+\frac{\mathrm{I} \ln \left(1-\frac{\mathrm{I} b f^{d x+c}}{-\mathrm{I} a+1}\right) x^{2}}{4}-\frac{\mathrm{I} c \operatorname{dilog}\left(\frac{b f^{d x+c}+a+\mathrm{I}}{\mathrm{I}+a}\right)}{2 d^{2} \ln (f)}-\frac{\mathrm{I} \operatorname{poly} \log \left(2, \frac{\mathrm{I} b f^{d x+c}}{-\mathrm{I} a-1}\right) c}{2 d^{2} \ln (f)} \\
& +\frac{\mathrm{I} \text { polylog }\left(2, \frac{\mathrm{I} b f^{d x+c}}{-\mathrm{I} a+1}\right) c}{2 d^{2} \ln (f)}-\frac{\mathrm{I} \text { polylog }\left(2, \frac{\mathrm{I} b f^{d x+c}}{-\mathrm{I} a-1}\right) x}{2 d \ln (f)}-\frac{\mathrm{I} c^{2} \ln \left(\frac{b f^{d x+c}+a+\mathrm{I}}{\mathrm{I}+a}\right)}{2 d^{2}}-\frac{\mathrm{I} \ln \left(1-\frac{\mathrm{I} b f^{d x+c}}{-\mathrm{I} a-1}\right) x^{2}}{4}-\frac{\mathrm{I} c^{2} \ln \left(\mathrm{I} b f^{d x+c}+\mathrm{I} a+1\right)}{4 d^{2}} \\
& +\frac{\mathrm{I} c^{2} \ln \left(1-\mathrm{I} a-\mathrm{I} b f^{d x+c}\right)}{4 d^{2}}+\frac{\mathrm{I} \ln \left(1-\frac{\mathrm{I} b f^{d x+c}}{-\mathrm{I} a+1}\right) c^{2}}{4 d^{2}}
\end{aligned}
$$

Problem 61: Result more than twice size of optimal antiderivative.

$$
\int \mathrm{e}^{c(b x+a)} \operatorname{arccot}(\cosh (b c x+a c)) \mathrm{d} x
$$

Optimal(type 3, 88 leaves, 8 steps):

$$
\frac{\mathrm{e}^{b c x+a c} \operatorname{arccot}(\cosh (c(b x+a)))}{b c}+\frac{\ln \left(3+\mathrm{e}^{2 c(b x+a)}-2 \sqrt{2}\right)(1-\sqrt{2})}{2 b c}+\frac{\ln \left(3+\mathrm{e}^{2 c(b x+a)}+2 \sqrt{2}\right)(1+\sqrt{2})}{2 b c}
$$

Result(type 3, 1333 leaves):

```
\(-\frac{\mathrm{I} e^{c(b x+a)} \ln \left(\mathrm{e}^{2 c(b x+a)}+1+2 \mathrm{Ie}^{c(b x+a)}\right)}{2 c b}\)
    \(+\frac{\pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{2 c(b x+a)}+1-2 \mathrm{Ie}^{c(b x+a)}\right)\right) \operatorname{csgn}\left(\mathrm{I}^{-c(b x+a)}\right) \operatorname{csgn}\left(\mathrm{I}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1-2 \mathrm{I}^{c(b x+a)}\right)\right) \mathrm{e}^{c(b x+a)}}{4 c b}\)
    \(-\frac{\pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{2 c(b x+a)}+1-2 \mathrm{I}^{c(b x+a)}\right)\right) \operatorname{csgn}\left(\mathrm{Ie}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1-2 \mathrm{I}^{c(b x+a)}\right)\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b}\)
    \(-\frac{\pi \operatorname{csgn}\left(\mathrm{Ie}^{-c(b x+a)}\right) \operatorname{csgn}\left(\mathrm{Ie}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1-2 \mathrm{Ie}^{c(b x+a)}\right)\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b}\)
    \(-\frac{\pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{2 c(b x+a)}+1+2 \mathrm{I}^{c(b x+a)}\right)\right) \operatorname{csgn}\left(\mathrm{I}^{-c(b x+a)}\right) \operatorname{csgn}\left(\mathrm{I}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1+2 \mathrm{I}^{c(b x+a)}\right)\right) \mathrm{e}^{c(b x+a)}}{4 c b}\)
    \(+\frac{\pi \operatorname{csgn}\left(\mathrm{Ie}^{-c(b x+a)}\right) \operatorname{csgn}\left(\mathrm{Ie}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1+2 \mathrm{Ie}^{c(b x+a)}\right)\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b}+\frac{\pi \operatorname{csgn}\left(\mathrm{Ie}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1-2 \mathrm{Ie}^{c(b x+a)}\right)\right)^{3} \mathrm{e}^{c(b x+a)}}{4 c b}\)
    \(-\frac{\pi \operatorname{csgn}\left(\mathrm{I}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1-2 \mathrm{Ie}^{c(b x+a)}\right)\right) \operatorname{csgn}\left(\mathrm{e}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1-2 \mathrm{Ie}^{c(b x+a)}\right)\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b}\)
    \(+\frac{\pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{2 c(b x+a)}+1+2 \mathrm{Ie}^{c(b x+a)}\right)\right) \operatorname{csgn}\left(\mathrm{Ie}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1+2 \mathrm{Ie}^{c(b x+a)}\right)\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b}\)
    \(-\frac{\pi \operatorname{csgn}\left(\mathrm{I}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1+2 \mathrm{Ie}^{c(b x+a)}\right)\right)^{3} \mathrm{e}^{c(b x+a)}}{4 c b}\)
    \(+\frac{\pi \operatorname{csgn}\left(\mathrm{I}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1+2 \mathrm{Ie}^{c(b x+a)}\right)\right) \operatorname{csgn}\left(\mathrm{e}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1+2 \mathrm{Ie}^{c(b x+a)}\right)\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b}\)
    \(-\frac{\pi \operatorname{csgn}\left(\mathrm{e}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1+2 \mathrm{I}^{c(b x+a)}\right)\right)^{3} \mathrm{e}^{c(b x+a)}}{4 c b}-\frac{\pi \operatorname{csgn}\left(\mathrm{e}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1-2 \mathrm{Ie}^{c(b x+a)}\right)\right)^{3} \mathrm{e}^{c(b x+a)}}{4 c b}\)
    \(+\frac{\pi \operatorname{csgn}\left(\mathrm{Ie}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1-2 \mathrm{Ie}^{c(b x+a)}\right)\right) \operatorname{csgn}\left(\mathrm{e}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1-2 \mathrm{I}^{c(b x+a)}\right)\right) \mathrm{e}^{c(b x+a)}}{4 c b}\)
    \(-\frac{\pi \operatorname{csgn}\left(\mathrm{I}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1+2 \mathrm{I}^{c(b x+a)}\right)\right) \operatorname{csgn}\left(\mathrm{e}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1+2 \mathrm{I}^{c(b x+a)}\right)\right) \mathrm{e}^{c(b x+a)}}{4 c b}\)
    \(+\frac{\pi \operatorname{csgn}\left(\mathrm{e}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1+2 \mathrm{I}^{c(b x+a)}\right)\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b}+\frac{\pi \operatorname{csgn}\left(\mathrm{e}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1-2 \mathrm{Ie}^{c(b x+a)}\right)\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b}\)
    \(+\frac{\mathrm{I} \mathrm{e}^{c(b x+a)} \ln \left(\mathrm{e}^{2 c(b x+a)}+1-2 \mathrm{Ie}^{c(b x+a)}\right)}{2 c b}+\frac{\ln \left(\mathrm{e}^{2 c(b x+a)}+(1+\sqrt{2})^{2}\right) \sqrt{2}}{2 c b}-\frac{\ln \left(\mathrm{e}^{2 c(b x+a)}+(\sqrt{2}-1)^{2}\right) \sqrt{2}}{2 c b}-\frac{2 a}{b}\)
    \(+\frac{\ln \left(\mathrm{e}^{2 c(b x+a)}+(1+\sqrt{2})^{2}\right)}{2 c b}+\frac{\ln \left(\mathrm{e}^{2 c(b x+a)}+(\sqrt{2}-1)^{2}\right)}{2 c b}\)
```

Problem 62: Result more than twice size of optimal antiderivative.

$$
\int \mathrm{e}^{c(b x+a)} \operatorname{arccot}(\tanh (b c x+a c)) \mathrm{d} x
$$

Optimal(type 3, 153 leaves, 13 steps):
$\frac{\mathrm{e}^{b c x+a c} \operatorname{arccot}(\tanh (c(b x+a)))}{b c}+\frac{\arctan \left(\mathrm{e}^{b c x+a c} \sqrt{2}-1\right) \sqrt{2}}{2 b c}+\frac{\arctan \left(1+\mathrm{e}^{b c x+a c} \sqrt{2}\right) \sqrt{2}}{2 b c}+\frac{\ln \left(1+\mathrm{e}^{2 c(b x+a)}-\mathrm{e}^{b c x+a c} \sqrt{2}\right) \sqrt{2}}{4 b c}$

$$
-\frac{\ln \left(1+\mathrm{e}^{2 c(b x+a)}+\mathrm{e}^{b c x+a c} \sqrt{2}\right) \sqrt{2}}{4 b c}
$$

Result(type 3, 1322 leaves):
$-\frac{\pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 c(b x+a)}+\mathrm{I}\right)}{\mathrm{e}^{2 c(b x+a)}+1}\right)^{3} \mathrm{e}^{c(b x+a)}}{4 c b}+\frac{\pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 c(b x+a)}-\mathrm{I}\right)}{\mathrm{e}^{2 c(b x+a)}+1}\right)^{3} \mathrm{e}^{c(b x+a)}}{4 c b}-\frac{\pi \operatorname{csgn}\left(\frac{(1-\mathrm{I})\left(\mathrm{e}^{2 c(b x+a)}-\mathrm{I}\right)}{\mathrm{e}^{2 c(b x+a)}+1}\right)^{3} \mathrm{e}^{c(b x+a)}}{4 c b}$ $-\frac{\pi \operatorname{csgn}\left(\frac{(1+\mathrm{I})\left(\mathrm{e}^{2 c(b x+a)}+\mathrm{I}\right)}{\mathrm{e}^{2 c(b x+a)}+1}\right)^{3} \mathrm{e}^{c(b x+a)}}{4 c b}+\frac{\pi \operatorname{csgn}\left(\frac{(1-\mathrm{I})\left(\mathrm{e}^{2 c(b x+a)}-\mathrm{I}\right)}{\mathrm{e}^{2 c(b x+a)}+1}\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b}+\frac{\pi \operatorname{csgn}\left(\frac{(1+\mathrm{I})\left(\mathrm{e}^{2 c(b x+a)}+\mathrm{I}\right)}{\mathrm{e}^{2 c(b x+a)}+1}\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b}$

$$
-\frac{\mathrm{I} \ln \left(\mathrm{e}^{c(b x+a)}+\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right) \sqrt{2}\right) \sqrt{2}}{4 c b}+\frac{\mathrm{I} \ln \left(\mathrm{e}^{c(b x+a)}+\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) \sqrt{2}\right) \sqrt{2}}{4 c b}-\frac{\mathrm{I} \ln \left(\mathrm{e}^{c(b x+a)}-\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) \sqrt{2}\right) \sqrt{2}}{4 c b}
$$

$$
+\frac{\mathrm{I} \ln \left(\mathrm{e}^{c(b x+a)}+\left(-\frac{1}{2}+\frac{\mathrm{I}}{2}\right) \sqrt{2}\right) \sqrt{2}}{4 c b}+\frac{\mathrm{I} \mathrm{e}^{c(b x+a)} \ln \left(\mathrm{e}^{2 c(b x+a)}-\mathrm{I}\right)}{2 c b}+\frac{\pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{2 c(b x+a)}+\mathrm{I}\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 c(b x+a)}+\mathrm{I}\right)}{\mathrm{e}^{2 c(b x+a)}+1}\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b}
$$

$$
+\frac{\pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 c(b x+a)}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 c(b x+a)}+\mathrm{I}\right)}{\mathrm{e}^{2 c(b x+a)}+1}\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b}+\frac{\pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 c(b x+a)}+\mathrm{I}\right)}{\mathrm{e}^{2 c(b x+a)}+1}\right) \operatorname{csgn}\left(\frac{(1+\mathrm{I})\left(\mathrm{e}^{2 c(b x+a)}+\mathrm{I}\right)}{\mathrm{e}^{2 c(b x+a)}+1}\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b}
$$

$$
-\frac{\pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 c(b x+a)}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 c(b x+a)}-\mathrm{I}\right)}{\mathrm{e}^{2 c(b x+a)}+1}\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b}-\frac{\pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{2 c(b x+a)}-\mathrm{I}\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 c(b x+a)}-\mathrm{I}\right)}{\mathrm{e}^{2 c(b x+a)}+1}\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b}
$$

$$
-\frac{\pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 c(b x+a)}-\mathrm{I}\right)}{\mathrm{e}^{2 c(b x+a)}+1}\right) \operatorname{csgn}\left(\frac{(1-\mathrm{I})\left(\mathrm{e}^{2 c(b x+a)}-\mathrm{I}\right)}{\mathrm{e}^{2 c(b x+a)}+1}\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b}-\frac{\pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 c(b x+a)}+\mathrm{I}\right)}{\mathrm{e}^{2 c(b x+a)}+1}\right) \operatorname{csgn}\left(\frac{(1+\mathrm{I})\left(\mathrm{e}^{2 c(b x+a)}+\mathrm{I}\right)}{\mathrm{e}^{2 c(b x+a)}+1}\right) \mathrm{e}^{c(b x+a)}}{4 c b}
$$

$$
+\frac{\pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 c(b x+a)}-\mathrm{I}\right)}{\mathrm{e}^{2 c(b x+a)}+1}\right) \operatorname{csgn}\left(\frac{(1-\mathrm{I})\left(\mathrm{e}^{2 c(b x+a)}-\mathrm{I}\right)}{\mathrm{e}^{2 c(b x+a)}+1}\right) \mathrm{e}^{c(b x+a)}}{4 c b}
$$

$$
-\pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 c(b x+a)}+1}\right) \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{2 c(b x+a)}+\mathrm{I}\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 c(b x+a)}+\mathrm{I}\right)}{\mathrm{e}^{2 c(b x+a)}+1}\right) \mathrm{e}^{c(b x+a)}
$$

$$
4 c b
$$

$$
+\frac{\pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 c(b x+a)}+1}\right) \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{2 c(b x+a)}-\mathrm{I}\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 c(b x+a)}-\mathrm{I}\right)}{\mathrm{e}^{2 c(b x+a)}+1}\right) \mathrm{e}^{c(b x+a)}}{4 c b}-\frac{\ln \left(\mathrm{e}^{c(b x+a)}+\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right) \sqrt{2}\right) \sqrt{2}}{4 c b}
$$

$$
\begin{aligned}
& -\frac{\ln \left(\mathrm{e}^{c(b x+a)}+\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) \sqrt{2}\right) \sqrt{2}}{4 c b}+\frac{\ln \left(\mathrm{e}^{c(b x+a)}-\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) \sqrt{2}\right) \sqrt{2}}{4 c b}+\frac{\ln \left(\mathrm{e}^{c(b x+a)}+\left(-\frac{1}{2}+\frac{\mathrm{I}}{2}\right) \sqrt{2}\right) \sqrt{2}}{4 c b}+\frac{\pi \mathrm{e}^{c(b x+a)}}{4 c b} \\
& -\frac{\mathrm{I} \mathrm{e}^{c(b x+a)} \ln \left(\mathrm{e}^{2 c(b x+a)}+\mathrm{I}\right)}{2 c b}
\end{aligned}
$$

Problem 63: Result more than twice size of optimal antiderivative.

$$
\int \mathrm{e}^{c(b x+a)} \operatorname{arccot}(\operatorname{sech}(b c x+a c)) \mathrm{d} x
$$

Optimal(type 3, 88 leaves, 8 steps):

$$
\frac{\mathrm{e}^{b c x+a c} \operatorname{arccot}(\operatorname{sech}(c(b x+a)))}{b c}-\frac{\ln \left(3+\mathrm{e}^{2 c(b x+a)}-2 \sqrt{2}\right)(1-\sqrt{2})}{2 b c}-\frac{\ln \left(3+\mathrm{e}^{2 c(b x+a)}+2 \sqrt{2}\right)(1+\sqrt{2})}{2 b c}
$$

Result(type 3, 846 leaves):

$$
-\frac{\mathrm{I} \mathrm{e}^{c(b x+a)} \ln \left(\mathrm{e}^{2 c(b x+a)}+1-2 \mathrm{Ie}^{c(b x+a)}\right)}{2 c b}+\frac{\pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 c(b x+a)}+1+2 \mathrm{I} \mathrm{e}^{c(b x+a)}\right)}{\mathrm{e}^{2 c(b x+a)}+1}\right)^{3} \mathrm{e}^{c(b x+a)}}{4 c b}
$$

$$
-\frac{\pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 c(b x+a)}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 c(b x+a)}+1+2 \mathrm{I}^{c(b x+a)}\right)}{\mathrm{e}^{2 c(b x+a)}+1}\right)^{2} \mathrm{e}^{c(b x+a)}}{}
$$

$$
-\frac{\pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{2 c(b x+a)}+1+2 \mathrm{I} \mathrm{e}^{c(b x+a)}\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 c(b x+a)}+1+2 \mathrm{I} \mathrm{e}^{c(b x+a)}\right)}{\mathrm{e}^{2 c(b x+a)}+1}\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b}
$$

$$
+\frac{\pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{2 c(b x+a)}+1+2 \mathrm{I} \mathrm{e}^{c(b x+a)}\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 c(b x+a)}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 c(b x+a)}+1+2 \mathrm{I} \mathrm{e}^{c(b x+a)}\right)}{\mathrm{e}^{2 c(b x+a)}+1}\right) \mathrm{e}^{c(b x+a)}}{4 c b}
$$

$$
-\frac{\pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{2 c(b x+a)}+1-2 \mathrm{I} \mathrm{e}^{c(b x+a)}\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 c(b x+a)}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 c(b x+a)}+1-2 \mathrm{I} \mathrm{e}^{c(b x+a)}\right)}{\mathrm{e}^{2 c(b x+a)}+1}\right) \mathrm{e}^{c(b x+a)}}{4 c b}
$$

$$
+\frac{\pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{2 c(b x+a)}+1-2 \mathrm{I} \mathrm{e}^{c(b x+a)}\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 c(b x+a)}+1-2 \mathrm{I} \mathrm{e}^{c(b x+a)}\right)}{\mathrm{e}^{2 c(b x+a)}+1}\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b}
$$

$$
+\frac{\pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 c(b x+a)}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 c(b x+a)}+1-2 \mathrm{I} \mathrm{e}^{c(b x+a)}\right)}{\mathrm{e}^{2 c(b x+a)}+1}\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b}-\frac{\pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 c(b x+a)}+1-2 \mathrm{I} e^{c(b x+a)}\right)}{\mathrm{e}^{2 c(b x+a)}+1}\right)^{3} \mathrm{e}^{c(b x+a)}}{4 c b}
$$

$$
+\frac{\mathrm{I} \mathrm{e}^{c(b x+a)} \ln \left(\mathrm{e}^{2 c(b x+a)}+1+2 \mathrm{I} \mathrm{e}^{c(b x+a)}\right)}{2 c b}+\frac{\ln \left(\mathrm{e}^{2 c(b x+a)}+(\sqrt{2}-1)^{2}\right) \sqrt{2}}{2 c b}-\frac{\ln \left(\mathrm{e}^{2 c(b x+a)}+(1+\sqrt{2})^{2}\right) \sqrt{2}}{2 c b}+\frac{\pi \mathrm{e}^{c(b x+a)}}{2 c b}+\frac{2 a}{b}
$$

$$
-\frac{\ln \left(\mathrm{e}^{2 c(b x+a)}+(\sqrt{2}-1)^{2}\right)}{2 c b}-\frac{\ln \left(\mathrm{e}^{2 c(b x+a)}+(1+\sqrt{2})^{2}\right)}{2 c b}
$$

Test results for the 4 problems in "5.4.2 Exponentials of inverse cotangent.txt"
Problem 1: Unable to integrate problem.

$$
\int \mathrm{e}^{\operatorname{arccot}(x)} \mathrm{d} x
$$

Optimal(type 5, 57 leaves, 2 steps):

$$
\left(\frac{4}{5}+\frac{8 \mathrm{I}}{5}\right)\left(\frac{x-\mathrm{I}}{x}\right)^{1+\frac{\mathrm{I}}{2}}\left(\frac{\mathrm{I}+x}{x}\right)^{-1-\frac{\mathrm{I}}{2}} \text { hypergeom }\left(\left[2,1+\frac{\mathrm{I}}{2}\right],\left[2+\frac{\mathrm{I}}{2}\right], \frac{1-\frac{\mathrm{I}}{x}}{1+\frac{\mathrm{I}}{x}}\right)
$$

Result(type 8, 5 leaves):

$$
\int \mathrm{e}^{\operatorname{arccot}(x)} \mathrm{d} x
$$

Problem 4: Unable to integrate problem.

$$
\int \frac{\mathrm{e}^{n \operatorname{arccot}(a x)}}{\left(a^{2} c x^{2}+c\right)^{4 / 3}} \mathrm{~d} x
$$

Optimal(type 5, 172 leaves, 4 steps):

$$
-\frac{3 \mathrm{e}^{n \operatorname{arccot}(a x)}(-2 a x+3 n)}{a c\left(9 n^{2}+4\right)\left(a^{2} c x^{2}+c\right)^{1 / 3}}
$$

$$
-\frac{6\left(1+\frac{1}{a^{2} x^{2}}\right)^{1 / 3}\left(\frac{a-\frac{\mathrm{I}}{x}}{a+\frac{\mathrm{I}}{x}}\right)^{\frac{1}{3}-\frac{\mathrm{I} n}{2}}\left(1-\frac{\mathrm{I}}{a x}\right)^{-\frac{1}{3}+\frac{\mathrm{I} n}{2}}\left(1+\frac{\mathrm{I}}{a x}\right)^{\frac{2}{3}-\frac{\mathrm{I} n}{2}} x \text { hypergeom }\left(\left[-\frac{1}{3}, \frac{1}{3}-\frac{\mathrm{I} n}{2}\right],\left[\frac{2}{3}\right], \frac{2 \mathrm{I}}{\left(a+\frac{\mathrm{I}}{x}\right) x}\right)}{c\left(9 n^{2}+4\right)\left(a^{2} c x^{2}+c\right)^{1 / 3}}
$$

Result(type 8, 22 leaves):

$$
\int \frac{\mathrm{e}^{n \operatorname{arccot}(a x)}}{\left(a^{2} c x^{2}+c\right)^{4 / 3}} \mathrm{~d} x
$$

[^0]67 integration problems

A - 40 optimal antiderivatives
B - 23 more than twice size of optimal antiderivatives
C - O unnecessarily complex antiderivatives
D - 4 unable to integrate problems
E - 0 integration timeouts

[^0]: Summary of Integration Test Results

